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I. Abstract 

  

 Prediabetes is an intermediate state of dysglycemia during which glycemic 

parameters are above normal levels but below the type 2 diabetes (T2D) threshold. It is 

well documented that prediabetes is a risk factor for progression to diabetes and 

cardiovascular disease. Recent studies have led to considerable advances in the 

identification of genetic variants associated with type 1 diabetes (T1D) and T2D. An 

approach for converting genetic data to a predictive measure of disease susceptibility is 

to add the risk effects of loci into a polygenic risk score (PRS).  

 The main objective of this research was to create a type 2 diabetes predictive 

polygenic risk score (T2D PRS) and obesity polygenic risk score (Obesity PRS) and find 

associations between these PRSs versus changes over time (Δ) in metabolic parameters 

related to T2D in Polish population.  

For the present study, 446 prediabetic subjects (54.9% of females, median age at 

baseline: 42.5 yrs., median BMI at baseline: 26.9) have been selected from the Polish 

Registry of Diabetes study maintained by the Department of Endocrinology, Diabetes, 

and Internal Medicine, Medical University of Bialystok. All subjects who were included 

underwent follow-up exams five years after the initial exam.  

In order to build a T2D PRS that can be accurate, the development of a systematic 

review of the most recent PRSs for different forms of diabetes with their advantages and 

disadvantages was done. Three PRS that discriminate between T1D patients and healthy 

people were identified, one that discriminate between T1D and T2D, two that 

discriminate between T1D and monogenic diabetes, and eight PRSs that discriminate 

between T2D patients and healthy people. After gathering and comparing all the 

information, genetic polymorphisms determined in studied patients were selected to 

build a T2D PRS (68 SNPs) and an obesity PRS (21 SNPs). Subsequently, 17 metabolic 

parameters were measured, and compared at baseline and after five years using statistical 

analysis. Finally, the associations between the two PRSs and the change in the metabolic 

traits were assessed. After a multiple linear regression with adjustment for age, sex, and 

BMI at a nominal significance of (P < 0.05) and adjustment for multiple testing, the T2D 

PRS was found to have a positive association with the change of fat mass (Δ FM) (p = 

0.025). Meanwhile, the obesity PRS was also positively associated with Δ FM (p = 0.023) 

and Δ 2-hour glucose (p = 0.034). The comparison of genotype frequencies showed that 
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the AA genotype of MTCH2 (rs10838738) is significantly associated with Δ glucose and 

Δ 2-hour insulin. Our findings suggest that prediabetic individuals with a higher risk for 

T2D experience increased Δ FM, and those with a higher risk of obesity experience 

increased Δ FM and Δ two-hour postprandial glucose. The associations found in this 

research could be a helpful tool for identifying individuals with an increased risk of 

worsening of the metabolic state. 
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II. Abstract in Polish 

 

Stan przedcukrzycowy to pośredni stan dysglikemii, w którym parametry glikemii 

są powyżej normy, ale poniżej progu dla cukrzycy typu 2 (T2D). Jest dobrze 

udokumentowane, że stan przedcukrzycowy jest czynnikiem ryzyka progresji do 

cukrzycy i chorób układu krążenia. Ostatnie badania doprowadziły do znacznych 

postępów w identyfikacji wariantów genetycznych związanych z cukrzycą typu 1 (T1D) 

i T2D. W celu praktycznego zastosowania danych genetycznych do przewidywania 

ryzyka rozwoju choroby wykorzystuje się połączony efekt wielu genów tworząc 

poligenowe wskaźniki ryzyka (PRS, Polygenic Risk Score). 

Głównym celem obecnego badania było stworzenie predykcyjnego wielogenowego 

wskaźnika cukrzycy typu 2 (T2D PRS) i wielogenowego wskaźnika ryzyka otyłości 

(Obesity PRS) oraz znalezienie w polskiej populacji związku między tymi PRS a 

zmianami w czasie (Δ) parametrów metabolicznych związanych z T2D. 

Do niniejszego badania z Polskiego Rejestru Cukrzycy prowadzonego przez Klinikę 

Endokrynologii, Diabetologii i Chorób Wewnętrznych Uniwersytetu Medycznego w 

Białymstoku wybrano 446 pacjentów w stanie przedcukrzycowym (54,9% kobiet, 

mediana wieku na początku badania: 42,5 roku, mediana BMI na początku badania: 

26,9). Wszyscy badani, którzy zostali uwzględnieni, zostali ponownie przebadani po 

okresie 5 lat. 

W celu zaprojektowania PRS T2D/PRS otyłości, wykonano systematyczny przegląd 

najnowszych publikacji dotyczących PRS dla różnych postaci cukrzycy wraz z ich 

zaletami i wadami. Zidentyfikowano trzy PRS, które odróżniają pacjentów z T1D od 

osób zdrowych, jeden, który odróżnia T1D od T2D, 2, który odróżnia T1D od cukrzycy 

monogenowej i 8 PRS, który odróżnia pacjentów z T2D od osób zdrowych. Po zebraniu 

i porównaniu wszystkich informacji określono polimorfizmy genetyczne występujące u 

pacjentów w celu zbudowania PRS T2D (68 SNP) i PRS otyłości (21 SNP). Następnie 

zmierzono 17 parametrów metabolicznych i porównano je na początku i po pięciu latach 

przy użyciu analizy statystycznej. Na koniec oceniono związek między dwoma PRS i 

zmianą cech metabolicznych. Po wielokrotnej regresji liniowej z korektą ze względu na 

wiek, płeć i BMI przy nominalnej istotności (P < 0,05) i korektą na wielokrotne testy 

wykazano, że T2D PRS ma dodatni związek ze zmianą masy tłuszczowej (Δ FM) (p = 

0,025). Zaobserwowano, że PRS otyłości koreluje ze zmianą masy tłuszczowej Δ FM (p 
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= 0,023) i zmianą wartości glikemii w czasie 120 (p = 0,034). Porównanie częstości 

występowania genotypów wykazało, że genotyp AA MTCH2 (rs10838738) jest istotnie 

związany z Δ glukozy i Δ insuliny w czasie 120. Nasze wyniki sugerują, że wśród osób 

z prediabetes badany wielogenowy wskaźnik cukrzycy typu 2 (T2D PRS) koreluje z 

ryzykiem przyrostu tłuszczowej masy ciała, a wielogenowy wskaźnik ryzyka otyłości 

(Obesity PRS) jest dobrym predyktorem zwiększenia tłuszczowej masy ciała i wzrostu 

glikemii w 2 godzinie OGTT w trakcie 5-letniej obserwacji. Wyniki tych badań mogą 

sugerować, że analizowane wskaźniki ryzyka cukrzycy typu 2/otyłości mogą być 

użytecznym narzędziem do identyfikacji osób o zwiększonym ryzyku pogorszenia stanu 

metabolicznego. 
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III. Introduction 

 

1. Diabetes 

 

Diabetes mellitus is a complex and heterogeneous group of chronic metabolic diseases 

characterized by hyperglycemia, now recognized as one of the most critical public health 

challenges of the 21st century [1]. The World Health Organization [2] estimated that diabetes 

was the seventh leading cause of death in 2016, being the direct cause of 1.6 million deaths. 

In 2014, 8.5% adults of 18 years old and older developed diabetes. In Europe, 1 in 11 adults 

are living with diabetes (Figure 1), and the number of adults with diabetes is expected to 

reach 67 million by 2030[3].  

 

Diabetes is a chronic disease that occurs when high blood sugar levels result from the body's 

inability to produce or make enough of the hormone insulin. The pancreas produces a 

hormone called insulin, which is essential for the body to function. Insulin is needed for the 

metabolism of carbohydrates, proteins, and fat, and it allows glucose from the bloodstream 

to enter a cell's interior, where it is converted to energy. When insufficient insulin or cells 

are not responding to insulin, the result is hyperglycemia (high blood glucose levels), 

indicating diabetes [3]. Diabetes can result in serious health complications if not well 

managed, including cardiovascular diseases, nerve damage, kidney diseases, limb 

amputation, and eye problems affecting the retina (including blindness). However, if diabetic 

management is well handled, these complications can be delayed or even prevented 

altogether. An insulin deficit left unchecked for a long time can also cause damage to many 

of the patient's organs, making the patient ill and even dying [3]. 

 

Diabetes can be controlled and its consequences prevented or delayed through diet, physical 

activity, medication, and regular assessment and treatment of complications [2]. There are 

three most common types of diabetes. Type 1 diabetes (T1D) occurs predominantly in people 

< 30 years old and is generally thought to be precipitated by immune-associated destruction 

of insulin-producing pancreatic beta cells, leading to insulin deficiency and requiring 

exogenous insulin supplement [4]. Type 2 diabetes (T2D), the most common type of 

diabetes,  is a progressive metabolic disease characterized by insulin resistance [5] and 

eventual functional failure of pancreatic beta cells [6,7]. Maturity-onset diabetes of the young 

(MODY) is a monogenic form of diabetes showing an autosomal dominant mode of 
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inheritance. It accounts for 1-5% of all diabetic forms of young and is specified by anomalous 

pancreatic beta-cell activity [8–10]. 

 

 

Figure 1. Statistics of Diabetes in Europe 2021[3] 

 

2. Type 1 Diabetes 

 

T1D is a chronic disease in which the immune system attacks the insulin-producing 

pancreatic beta-cells. This results in a lack of insulin and elevated blood glucose levels[11]. 

When the body's immune system starts to produce autoantibodies against beta-cells, the 

person eventually develops T1D and produces little to no insulin[3]. More than 90% of 

patients newly diagnosed with T1D have measurable autoantibodies against specific beta-

cell proteins, including insulin, glutamate decarboxylase, islet antigen 2, zinc transporter 8, 

and tetraspanin-7 [12]. 

 

Different factors such as diet, genetic background, environment, beta-cell stress, and immune 

phenotype increase the development of autoimmunity and beta-cell loss in clinical T1D 

[13].  T1D has a substantial heritable component, estimated to be between 65 to 88% [14,15]. 

Genes in the HLA region confer 50% of the genetic risk of T1D. The genes in this complex 
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are categorized into two major classes: class I and class II. Class-I HLA presents antigen 

peptide found within the cell to CD8 positive (cytotoxic T cells). In contrast, Class-II HLA 

presents antigen peptide found outside the cell to CD4 positive (helper T cells)[16]. Over 60 

common non-HLA T1D risk variants across the genome have been identified in linkage and 

genome-wide association studies (GWAS) [17,18]. Over the past two decades, there has been 

an explosion of knowledge about T1D, including the immune characteristics of the disease, 

as well as its incidence, genetics, and clinical burden. There have been many interventions 

to preserve beta cells and several methods to improve disease management. However, despite 

this increased knowledge, there are still many gaps in our understanding of T1D and our 

ability to manage the disease and its complications[3]. 

 

3. Type 2 Diabetes 

 

T2D remains a significant clinical burden worldwide. T2D is costly, and affects individuals, 

health care systems, and economies [19]. T2D affects 6.28% of the world’s population and 

is the most common form of diabetes, accounting for more than 90% of all diagnosed cases 

of diabetes worldwide [2,3].  The most crucial feature of T2D pathogenesis is insulin 

resistance, where tissues are not responding correctly to physiological insulin secretion. With 

the onset of insulin resistance, insulin is less effective and prompts an increase in pancreatic 

production. Over time, this can lead to the failure of the pancreatic beta cells and the 

development of overt T2D[3].   After the onset, T2D for many years can be asymptomatic; 

however, when symptoms are already present, they are usually less pronounced than in T1D. 

The beginning of T2D is impossible to pinpoint, and many people who have it go 

undiagnosed for an extended period (even up to half or a third of people with T2D). When 

the disease is asymptomatic for a long time, complications such as retinopathy, neuropathy, 

heart disease, and even stroke can occur as a first manifestation of the disease leading to the 

diagnosis of diabetes [3,20,21]. Many variables can increase the risk of T2D, such as age, 

obesity, having a family history of diabetes, or being of a certain ethnicity. The pathogenesis 

of the disease is a combination of environmental triggers and genetic predispositions [3,22]. 

 

More than 400 genetic loci have been discovered to be associated with diabetes risk by 

multiple studies [23–25]. While lifestyle and drug interventions can play a part in slowing 

down the progression of diabetes development, much research is still being done to determine 

those who will develop T2D at some point in their lives. There is some skepticism regarding 
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the practical use of these genetic variants in personal risk prediction for T2D due to the 

relatively weak effect size of single genetic variants and the fact that the environment is the 

main cause of the development of T2D [26,27]. However, there are ongoing efforts to explore 

the clinical utility of polygenic risk scores, combining the effects of multiple genetic variants. 

 

Current treatments for T2D have been incapable of stopping the development of T2D and 

complications [28,29]. One of the reasons may be the heterogeneity of the disease and the 

fact that the one-fits-all approach for diabetes prevention and treatment does not work the 

same way for all patients [30,31]. The implications of wrong diagnosis, coding or 

classification affect optimal treatment regimen and cause inappropriate financial and 

psychological impact in such patients. Patients with the correct diagnosis of disease, with 

identification of the etiology of the disease, achieve significant improvements in their 

glycemic control [32,33]. 

 

4. Prediabetes 

 

Prediabetes is an intermediate state of hyperglycemia with glycemic parameters above 

normal but below the diabetes threshold [34] and it affects 7.3% of the world’s population 

[35,36].  Approximately 25% of people who have prediabetes will develop full T2D in 3-5 

years, and up to 70% of people who have prediabetes will develop T2D during their life 

[37,38]. Many different factors can cause diabetes and prediabetes. Lifestyle, genetic, and 

environmental factors all can play a part. The primary cause is obesity; in fact even 80-85% 

of cases of diabetes and prediabetes can be mediated by excessive body mass [39,40]. While 

prediabetes can lead to T2D, itself has negative health consequences. Clear links between 

cardiovascular disease, metabolic syndrome, and prediabetes have emerged in recent years. 

Nevertheless, the pathophysiological defects seen in prediabetes can be managed by lifestyle 

modifications in most patients [41,42]. In addition to the complications associated with the 

condition, differentiating prediabetes from diabetes is supported by the International 

Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) [36,43]. 

Different organizations have different criteria for prediabetes, and care needs to be taken 

when describing prevalence and incidence statistics (Table 1). 
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Table 1. Prediabetes diagnostic criteria[44] 

 

Diagnostic 

criteria 

WHO[2] ADA[45] NICE[46] 

HbA1c Not recommended 

for diagnosis 

39 – 47 

mmol/mol  

42 – 47 

mmol/mol 

2-hour glucose 

during OGTT 

7.8 – 11 mmol/L 7.8 – 11 

mmol/L 

7.8 – 11 mmol/L 

Fasting plasma 

glucose 

6.1 – 6.9 mmol/L 5.6 – 6.9 

mmol/L 

6.1 – 6.9 

mmol/L 

 

 

5. Obesity 

 

Obesity is a chronic disease, a global pandemic, and a significant risk factor for other 

conditions such as T2D, heart disease, and cancer [47,48].  Over 1 billion people will be 

obese worldwide by 2030, according to new data presented in the World Obesity Atlas 2022 

[48]. Obesity, like all chronic diseases, has a different range of determinants such as genetics, 

biology, healthcare access, mental health, sociocultural factors, diet, economics, and 

environment [48]. Changes in appetite, satiety, metabolism, amount of body fat, and 

hormone balance are all caused by obesity. These changes do not always go away with 

weight loss and can last many years. Prevention is critical in countries where the obesity 

trend is just beginning. The global obesity epidemic is driving the rapid increase in the 

prevalence of T2D[49]. It is known that obesity, prediabetes, and insulin resistance are highly 

related [50–52], nevertheless in the last years it have been discovered the highly potential 

causal effect of obesity on prediabetes and insulin resistance and the key role of adipose 

tissue in insulin resistance[53]. 

 

While the environment has been a major factor in increasing obesity rates, genetic factors 

also play a key role in the development of the disease [54,55]. Hundreds of genes have been 

identified through GWAS to be connected to obesity [55–57], though they only influence 

around 5% of the chance of someone being obese [55,58]. Their low influence may be 

because there are still unknown interactions between genes, the environment, and other 

epigenetic factors [55,59]. Many genes connected to obesity are involved in energy-

regulating processes, such as glucose metabolism and circadian rhythm. 
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6. Genomics 

 

Genomics medicine is focused on understanding an individual’s biology based on their 

genetic code [60].  Genome technology is transforming healthcare, enabling more genes to 

be sequenced in less time and at a lower cost. Today, physicians and scientists have an 

unprecedented ability to discover genes, unravel molecular signaling pathways abstractly, 

and find new targets for biomarkers and therapy [61]. Doing so, they can predict a patient 

likelihood of developing a disease in the future, which can help improve the health care sector 

by preventing unnecessary concerns and preempting therapies for people who are considered 

at higher risk [62]. Thanks to genomics and GWAS, scientist have been able to identify genes 

associated with a particular disease, searching for single nucleotide polymorphism (SNPs). 

GWAS aims to determine genotype-phenotype associations by testing for differences in 

allele frequencies of genetic variants between individuals with similar ancestry but different 

phenotypes. GWAS results have many applications, such as to gain insight into the 

underlying biology of phenotypes, estimate their heritability, and find potential relationships 

between genetic risk factors and health outcomes[63]. The data generated from GWAS is 

being used more and more to predict metabolic diseases [64,65]. If genomic data will be used 

across healthcare, specialists must understand the potential risk associated with interpreting 

genomic data to ensure its safety and benefit to patients. 

 

7. Type 2 Diabetes Genomics 

 

The advent of genotyping and sequencing technologies has contributed to the discovery of 

many genetic variants contributing to T2D pathogenetic complexity. Likewise, the 

generation of genome‐wide variation data has become common for predicting metabolic 

diseases [64,65]. T2D has well‐established risk loci and likely contains many genetic 

determinants with effects too small to be detected at genome‐wide levels of statistical 

significance [66]. This demonstrates that all common variants across the genome explain a 

much higher proportion of heritability (50% or more) in many complex traits than can be 

seen using only a small subset of significant SNPs [67]. These advances provide 

opportunities to determine the utility of genomic regions in predicting treatment responses 

[68]. The number of studies combining phenotypic and genetic variables to predict diabetes 

risk has increased recently and show generally promising results [62,69]. 
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Many loci on the genome have been shown to increase the risk of T2D. Many genetic 

components may not be seen at high significance levels on a larger scale but can be seen 

when looking at all common variants across the entire genome [66]. This suggests that all 

common variants in the genome explain a higher proportion of heritability in many complex 

traits than can be seen based on only a small subset of significant SNPs [67]. 

 

8. Polygenic Risk Scores 

 

An approach for converting genetic data to a predictive measure of disease susceptibility is 

to add the risk effects of these loci into a single score called polygenic risk score (PRS) 

[70,71]. Based on the largest GWAS studies, the PRS combines multiple alleles an individual 

carries that are considered risk alleles for a disease. The number of risk alleles an individual 

carries is added together, and then weighted by the size of each allele effect (log of odds ratio 

for binary traits or beta coefficient for continuous traits). The result is one overall score 

indicating an individual’s likelihood of developing a disease or possessing a particular trait 

[72]. 

 

Despite only explain a small fraction of trait variation, the correlation between PRSs and an 

individual’s highest likelihood of a trait has made them a very popular tool in biomedical 

research. They may be used in clinical practice in patients with a higher likelihood of 

suffering from the disease, for example, in early stages of disease. They could be used to 

help with diagnosis, suggest treatment options, to determine shared etiology between 

diseases, and more [72,73]. PRS studies generally use cohorts that are fairly similar together 

(such as linked to ethnicity), which is one of the limitations of these studies [74]. To solve 

this problem, calibration, validation, and optimization of the PRS is needed for every study 

cohort to ensure that the results are not fitted [60]. 

 

9. Polygenic Risk Scores in Diabetes 

 

Over the past few decades, there have been many extensive genetic studies that have looked 

at the risk of developing T2D or T1D across multiple sites in the genome  [75,76]. There are 

over 400 different genetic signals on T2D risk identified [77], and over 50 loci influencing 

T1D risk [78]. There are many reasons why genetic testing for diabetes risk is not part of the 

standard care, but some of the main ones are the cost of genotyping, lack of education of 
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healthcare providers in precision medicine utilizing genetic testing, and still ongoing efforts 

to improve their predictive power [13]. There is an increased rate of T2D in the public today, 

and it is one of the biggest health concerns [79]. Although obesity is the strongest predictor 

of T2D, it is also known that heritability of T2D is between 26-69% depending on age of 

onset, thus motivating the search for genetic predictors for T2D [80–82]. This encourages 

the search for genetic markers that will predict T2D and create a numeric index of risk: a 

PRS based on many genotyped variants [83]. The PRS encourages decision support for 

diagnosis, and they are reliable when discriminating diabetes subtypes[84–86]. 
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IV. Objectives 

 

 

1. Systematic review of studies comparing the accuracy of polygenic risk scores 

developed for T1D and T2D.  

 

2. Evaluation of the T2D PRS and the obesity PRS in predicting changes in clinical 

parameters related to prediabetes and metabolic complications over time. 

 

3. Evaluation of the association of selected T2D and obesity SNPs genotypes with 

changes in clinical parameters related to prediabetes and metabolic 

complications. 
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V. Materials and Methods 

 

1. Systematic review: Search Strategies and Study Selection  

 

The databases for literature searches were Web of Science, Scopus and PubMed. The 

keywords for the databases search were: T1D, T2D, and monogenic polygenic risk score 

studies discovered between 2000 and September 2019. Search terms were "type 1", 

"diabetes", "genetic risk score" "polygenic risk score", "type 2", "mature-onset diabetes in 

young adults", and all possible combination of these terms. Publications excluded during the 

screening phase were (1) articles only available as abstracts, (2) risk assessments developed 

before 2000, and (3) non-English publications. 

 

2. Data Collection Process 

 

The details collected from the full text and additional information included the first author 

of the study, the year the study was published, the DOI when available, the ethnic background 

of the participants, the country in which the study took place, the data set used in the study, 

and if validation sets were used. The number of patients and controls, method of 

genotyping/sequencing, and the specific panels and numbers of genes used for genotyping 

were also collected. Additionally, the numbers of SNPs used to create a PRS were noted, as 

well as the clinical risk factors used and the AUC each had. 

 

3. Synthesis of Review Results 

 

The AUC was considered to compare and assess the accuracy of the PRS. The AUC was 

split into three categories based on the subtype of diabetes to differentiate between them. The 

first group included a T1D PRS comparison. The second group had a T2D PRS comparison. 

The third group included a T1D PRS comparison used to discriminate T1D vs. T2D and T1D 

vs. monogenic diabetes. 
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4. Observational study: Study Design and Participants 

 

The data was collected within the Polish Registry of Diabetes (PolReD) study (formerly 

known as the 1000PLUS cohort), conducted at the Clinical Research Centre of the Medical 

University of Bialystok, Poland, and comprises patients with follow-up data, enrolled in the 

study between 2009 and 2012. In total, 446 subjects who were prediabetic but did not have 

a diagnosis of T2D at baseline were selected from the overall population for this study. The 

PolReD study design has been described in detail [87,88].  Before the study began, all 

participants signed an informed consent form. The ethics committee of the Medical 

University of Bialystok originally approved this study (RI-002/436/2019). Patients at risk of 

developing diabetes (prediabetes), defined as impaired fasting glucose, impaired glucose 

tolerance, or both [89], were excluded if they had any recent surgery, infection, 

cardiovascular disease, or severe illness. Those included underwent a follow-up exam five 

years after the initial exam. 

 

5. Sample Collection and Body Composition Measurements 

 

Participants had to fast overnight and not do much physical activity the day before their tests. 

Their blood was taken from whole blood samples in two visits: baseline (visit 1) and follow-

up after five years (visit 2). The participant's weight, body mass index (BMI), and other 

anthropometric measurements were taken using standardized procedures. Biochemical 

measurements, including plasma glucose, serum triglycerides (TG), total cholesterol, high-

density lipoprotein (HDL), and low-density lipoprotein (LDL) concentrations, were 

performed by the colorimetric method with Cobas c111 (Roche Diagnostics, Basel, 

Switzerland). Insulin concentrations were measured in the serum using an 

immunoradiometric assay kit (DIAsource ImmunoAssays SA, Belgium). Glycated 

hemoglobin (HbA1C) was measured by the high-performance liquid chromatography 

method (D-10 Hemoglobin Testing System, Bio-Rad Laboratories Inc., Hercules, CA, USA; 

Bio-Rad, Marnes-la-Coquette, France). The colorimetric method measured fasting glucose 

concentration and glucose concentration at two hours in the plasma. The fat-free mass 

(FFM), fat mass (FM), muscle mass (MM), visceral fat (VF), subcutaneous fat (SF), and the 

ratio of visceral adipose tissue to subcutaneous adipose tissue (VAT/SAT) were measured 

using a Maltron body fat analyzer (Maltron BioScan 920-2, Maltron International Ltd., 

United Kingdom). Physical activity was measured using the International Physical Activity 

Questionnaire (IPAQ). Visit 1 and 2 used the same method for all measurements. 
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6. Genotyping 

 

DNA was extracted from the peripheral blood leukocytes using the classical salting out 

method. The SNP genotyping was done with TaqMan SNP technology from a ready-to-use 

human assay library (Applied Biosystems, MA, USA) using a high-throughput genotyping 

system, OpenArray (Life Technologies, CA, USA). A sample without DNA was used as a 

negative control to help detect any contamination in the system. 

 

7. Polygenic Risk Score Analysis 

 

Two PRSs were constructed, one for T2D and the other for obesity, the approach to building 

them was by summing the number of risk alleles carried by each individual, weighted by the 

effect size estimates from well-established genome-wide associations selected from the Type 

2 Diabetes Knowledge Portal [90]. Due to the limited availability of SNPs on our genotyping 

platform, we could include only a subset of the known genome-wide significant loci for T2D 

and obesity, resulting in a T2D PRS of 68 SNPs and an obesity PRS of 21 SNPs. The analysis 

and calculations were done in R (version 4.1.0) [91]. 

 

8. Statistical analysis 

 

The mean ± standard deviation (SD) or median (interquartile range) are reported for 

continuous normally, or non-normally distributed traits. Normality was assessed using the 

Shapiro-Wilk test. This analysis revealed that the studied parameters did not follow a normal 

distribution. Consequently, nonparametric tests were used for the statistical analysis between 

groups. The Wilcoxon signed-rank test was used to compare variables at baseline and follow-

up. The change (Δ) in time (T2 minus T1) of each metabolic parameter was obtained. 

 

To check if the genotypes’ frequencies had a statistically significant effect, they were 

compared to different metabolic parameters in a series of tests. Statistically significant 

differences between groups, determined by genotypes, were estimated using the Kruskal-

Wallis test. A post-hoc analysis was performed by applying the Wilcoxon rank-sum test for 

all pairwise comparisons to discover which genotypes caused the particular test to be 

significant. Multiple linear regression with adjustment for age and sex was used to test the 

association between the PRSs and baseline metabolic parameters. 
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After that, another multiple linear regression with adjustments for age, sex, and BMI was 

used to test the association between the PRSs and the changes in metabolic parameters 

between baseline and follow-up. β coefficients were presented as an incremental increase or 

decrease in the trait per the SD of the tested PRS. For all the tests described in this section, 

the p-values were adjusted to <0.05 using the false discovery rate correction for multiple 

comparisons. All calculations were prepared in R (version 4.1.0) [91]. 
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VI. Results 

 

1. Systematic Review: Selection of Studies 

 

A total of 14 studies were selected for the systematic review after screening and evaluating 

62 articles retrieved from PubMed, Scopus, and Web of Science. The studies have different 

genes, and genotyping strategies in their data sets, and panels. (Figure 2).  

 

 

 

Figure 2. Study selection flow diagram[92] 

 

Six studies reviewed all the possible PRS for  T1D  [93–98], and eight other studies reviewed 

PRS for T2D [83,99–105] (Table 2). Most of the studies were conducted on Caucasian 

populations, but some conducted studies on Hispanic, African-American, Asian-American 

and Iranian populations. Despite the Iranian cohort, all of the studies included a large number 

of patients and control subjects. 
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Table 2. The studies selected for systematic review[92] 

Study Year Country / Ethnicity Patients Controls 

Studies describing Type 1 Diabetes Polygenic Risk-Score 

Winkler, C. [95] 2014 Caucasian 4,574 1,207 

Oram, R. [93] 2015 Caucasian n = 1,938 

Patel, K. [94] 2016 Caucasian 1,963 805 

Perry, D. [96] 2018 Caucasian, Hispanic, African-

America, and Asian-American 

627 423 

Sharp, S [97] 2019 Caucasian 6,670 9,416 

Yaghootkar, H. 

[98] 

2019 Iranian 121 6 

Studies describing Type 2 Diabetes Polygenic Risk-Score 

Weedon, M. [100] 2006 British 2,409 3,669 

Lango, A. [101] 2008 Scotland 2,309 2,598 

Lyssenko, V. 

[102] 

2008 Finland 2,201 16,630 

Meigs, J. [103] 2008 European ancestry in USA n = 2,776 

Chatterjee, N. 

[104] 

2013 Caucasian 8,130 38,987 

Vassy, J. [105] 2014 European ancestry in USA 5,941 5,942. 

Läll, K. [83] 2016 Estonia 1,181 9,092 

Khera, A.V. [99] 2018 British 26,676 120,280 

 

There are many datasets that were used in the studies: T1DGC [106], WTCCC [107], UFDI, 

Iranian Hospitals [35], UK hospital [45], GoDARTS [108], MPP [109], BPS [110], 

Framingham Offspring Study [111], Voight [112], CARDIA [113], The Estonian Biobank 

[114] and the UK Biobank [115] (Table 3). 

 

The panel of genes used to build the PRS are also different. For T1D PRS, the studies used 

either the panel of genes from T1DGC (n = 4) [106], 1000 genomes project (n = 4) [116] or 

the Immunobase.org on October 2017 (n = 1). For T2D PRS, the studies used either specific 

genes from previous studies (n = 5), different versions of the DIAGRAM Consortium panel 

of genes (n = 2)[117], or the 1000 genomes project (n =1) [116]. Finally, the platforms used 

for genotyping also differ. Most of the studies used modified TaqMan assays (n = 5) 

[95,96,100,101,105], different versions of Affymetrix microarrays (n =5) [93,94,97,99,105] 

and Illumina technology (n = 3)[74,85,118]. One study used KASPar genotyping[102], 

another the iPLEX technology[103], and another one used next-generation sequencing 

unspecified[98].  
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Table 3. Data set source, panel of genes used and genotyping strategies[92] 

Study Year Data set Panel of genes Platform 

Studies describing Type 1 Diabetes Polygenic Risk-Score 

Winkler, C. 

[95] 

2014 T1DGC T1DGC TaqMan 

5´nuclease assay 

Oram, R. 

[93] 

2015 WTCCC 1000 genomes and 

T1DGC 

Affymetrix 

500K SNP chip 

Patel, K. 

[94] 

2016 WTCCC 1000 genomes and 

T1DGC 

Affymetrix 

500K SNP chip 

Perry, D. 

[96] 

2018 University of 

Florida 

diabetes institute 

(UFDI) 

Immunobase.org 

October 2017 

Taqman SNP 

genotyping array 

Sharp, S. 

[97] 

2019 T1DGC 1000 genomes Affymetrix 

Axiom Array 

Yaghootkar, 

H. [98] 

2019 Imam Reza 

Hospital and 

Children’s Medical 

Centre in Iran 

1000 genomes and 

T1DGC 

Targeted next- 

generation 

sequencing 

(Unspecified) 

Studies describing Type 2 Diabetes Polygenic Risk-Score 

Weedon, M. 

[100] 

2006 UK KCNK11, PPARG, 

TCF7L2. 

Modified 

TaqMan 

Lango, A. 

[101] 

2008 GoDARTS Frayling [119] and 

Zeggini [120] 

Modified 

TaqMan 

Lyssenko, 

V. [102] 

2008 Malmö Preventive 

Project (MPP) & 

Botnia Prospective 

Study (BPS). 

Gloyn [121], Grant 

[122], Saxena [123], 

Frayling [119], Scott 

[124], Sladek [125] 

Allele-specific 

(KASPar) 

Meigs, J. 

[103] 

2008 The Framingham 

Offspring Study 

Saxena [123], Zeggini 

[120] 

iPLEX 

technology 

Chatterjee, 

N. [104] 

2013 Voight [112] Voight [112] Illumina Omni 

2.5M Platform 

Vassy, J. 

[105] 

2014 The Framingham 

Offspring Study & 

CARDIA 

DIAGRAMv3 Taqman, 

Illumina 

technology, 

Affymetrix 6.0, 

llumina 370  

Läll, K. 

[83] 

2016 The Estonian 

Biobank 

DIAGRAM Consortium Illumina Human 

OmniExpress, 

Illumina Cardio-

MetaboChip 

Khera, A.V. 

[99] 

2018 The UK Biobank 1000 genome phase 3 

version 5 (Linkage 

disequilibrium panel) 

Affymetrix UK 

BiLEVE Axiom 

array 
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2. Polygenic Risk Score for T1D prediction. 

 

Winkler developed a multivariable logistic regression model to estimate PRS, including 40 

non-HLA genes SNPs, significantly improving the risk score with an AUC of 0.87 compared 

to the control [95]. Oram and colleagues [93] used a log-additive model to develop a PRS 

model to discriminate between patients versus controls for T1D. They applied a 30 SNP 

T1D-PRS to a sample of cases of T1D versus controls. They found the T1D-PRS was highly 

discriminant, with an AUC of 0.88 (Table 4). 

The majority of genetics studies on T1D are limited to Caucasian cohorts. However, Perry 

investigated the hypothesis that ethnicity would be necessary for evaluating genetic risk 

markers previously identified in Caucasian cohorts [96]. They apply the PRS  used by Oram 

[94] to Hispanic Caucasian, African American and Asian American populations. The 

Hispanic Caucasian PRS  was highly discriminant with an AUC of 0.90. The PRS  for Asian 

Americans was also highly discriminant with an AUC of 0.92, the analysis indicated that this 

PRS could discriminate T1D subjects from controls in a small cohort for subjects of Asian 

Americans, but larger studies are required to validate and extend these findings. The African 

Americans obtained a less discriminant PRS  with an AUC of 0.75; notable risk differences 

were observed for 3 SNPs: SH2B3, CTRB1/2, and GAB3 in this population [96]. The most 

recent update for T1D-PRS includes 67 SNPs and accounts for interactions between 18 HLA 

DR-DQ combinations. This risk score identifies individuals with T1D with an AUC of 0.92 

[97] (Table 4). 

 

Table 4. Comparison of the accuracy of T1D PRS assessed by the AUC[92]. 

Year Autor PRS SNPs AUC PRS Ethnicity 

2014 Winkler, C. 

[95] 

T1D 41 0.87 Caucasian 

2015 Oram, R. [93] T1D 30 0.88 Caucasian 

2018 Perry, D. [96] T1D 32 0.86 Caucasian 

2018 Perry, D. [96] T1D 32 0.90 Caucasian Hispanic 

2018 Perry, D. [96] T1D 32 0.75 African American 

2018 Perry, D. [96] T1D 32 0.92 Asian American 

2019 Sharp, S. [97] T1D 67 0.93 Caucasian 
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3. Polygenic risk scores for T2D prediction 

 

Before the first GWAS for T2D, a study was published describing three genetic variants 

associated with T2D and comparing the combined risk of these variants and the risk of 

genetic testing using AUC ratings. The AUC was 0.58, a value above 0.50, indicating no 

discrimination but lower than that observed in clinical trials [100]. Two years later, Lango 

and colleagues examined the PGR with 16 SNPs, with an AUC of 0.789 for predicting 

diabetes incidence, ; adding PRS to the clinical factors had little effect on performance and 

pushed the AUC down to 0.80 [101] (Table 5). 

In a different study, a16 SNPs PGR (scores adjusted for age, sex, family history, BMI, blood 

pressure, triglycerides, and fasting glucose) predicted diabetes incidence with an AUC of 

0.740, after adding PRS to clinical risk factors (CRF), an AUC of 0.750 had little effect on 

the ability to predict T2D [102]. In the same year, Meigs estimated a PRS with 18 SNPs with 

an AUC of 0.534 for new-onset diabetes. With an expanded clinical model including age, 

sex, family history, BMI, glucose levels, cholesterol levels, and triglyceride levels, the AUC 

was 0.90. Adding genetic data to these two PRSs increased the AUC to 0.58 and 0.910, 

respectively [103].  Another study was performed using a PRS with 22 SNPs, with an AUC 

of 0.570 adjusted for age, sex, and family history, adding the PRS, the AUC increased to 

0.740 [104]. The PRS with 62 SNPs showed an improved AUC for T2D prediction, with an 

AUC of 0.72, and a score of 0.91 after adding other important clinical factors [105]. Khera 

[99] used a different method, including 7 million variants, generating a PRS with an AUC of 

0.73 (Table 5). 
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Table 5. Comparison of the accuracy of T2D PRS assessed by the AUC[92]. 

Year Autor PRS SNPs AUC 

CRF 

AUC 

PRS 

+ 

CRF 

Diff Clinical risk 

factors 

Ethnicity 

2006 Weedon, 

M. [100]  

T2D 3 - 0.580 - - Caucasian 

2008 Lango, A. 

[101] 

T2D 18 0.780 0.800 0.020 Age, BMI, sex Caucasian 

2008 Lyssenko, 

V. [102] 

T2D 16 0.740 0.750 0.010 Age, sex, family 

history, BMI, 

blood pressure, 

triglycerides, 

fasting plasma 

glucose 

Caucasian 

2008 Meigs, J. 

[103]  

T2D 18 0.534 0.581 0.047 Age, sex Caucasian 

2008 Meigs J. 

[103] 

T2D 18 0.595 0.615 0.020 Sex, age, family 

history 

Caucasian 

2008 Meigs, J. 

[103] 

T2D 18 0.900 0.910 0.010 Age, sex, family 

history, BMI, 

glucose, 

cholesterol, 

triglycerides 

Caucasian 

2013 Chatterjee, 

N. [104] 

T2D 22 0.570 0.740 0.170 Age, sex, family 

history 

Caucasian 

2014 Vassy, J. 

[105] 

T2D 62 0.698 0.726 0.028 Age, sex Caucasian, 

USA 

population 

2014 Vassy, J. 

[105] 

T2D 62 0.903 0.906 0.003 Sex, parental T2D, 

BMI, blood 

pressure, HDL 

cholesterol, 

triglyceride levels, 

age 

Caucasian, 

USA 

population 

2016 Läll, K. 

[83] 

T2D-

double 

weighted 

1000 0.699 0.74 0.042 Sex, age Caucasian 

2016 Läll, K. 

[83] 

T2D-dw 1000 0.718 0.767 0.049 Sex, age, BMI Caucasian 

2016 Läll, K. 

[83] 

T2D-dw 1000 0.777 0.79 0.012 Sex, age, BMI, 

history of 

hypertension, and 

vegetable 

consumption 

Caucasian 

2018 Khera, 

A.V.[99] 

T2D 7M 0.66 0.73 0.070 Sex, age Caucasian 
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4. Polygenic risk scores for different diabetes subtypes 

 

Oram and his team were the first group to use a PRS to differentiate between T1D and T2D 

[93]. They used 30 SNPs, including HLA and non-HLA loci, and got an accuracy of 0.88. 

The AUC for the PRS using the top 9 SNPs was 0.873 (table 6). 

A group of researchers, led by Patel [29], used 30 SPNs to create a T1D PRS. The PRS was 

used to differentiate monogenic diabetes from T1D. The AUC of the PRS was found to be 

highly discriminant between the two disease states, being 0.87. A study by Yaghootkar and 

his team [35] provided the first evidence that the T1D PRS proposed by Oram [28], could 

help to distinguish monogenic diabetes from T1D in an Iranian population. AUC analysis 

showed that T1D-PRS in the non-European cohort strongly discriminated between 

monogenic and T1D with a score of 0.898, which was similar to the ability of the same PRS 

in the European cohort (Table 6). 

 

Table 6. Comparison of accuracy of T1D PRS, to discriminate diabetes subtypes, assessed 

by the AUC[92].  

Year Autor PRS SNPs AUC PRS Ethnicity 

2015 Oram, R. [93] T1D vs. T2D 30 0.88 Caucasian 

2015 Oram, R. [93] T1D vs. T2D 9 0.87 Caucasian 

2016 Patel, K. [94] T1D vs. MODY 30 0.87 Caucasian 

2019 
Yaghootkar, H. 

[98] 

T1D vs Monogenic 

diabetes 
9 0.90 Iranian 
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5. Observational study: Subjects Characteristics 

 

The table below shows the details of the 446 participants. About half of the participants were 

women, and the average age was 42.54 years. The median BMI was 26.87 kg/m2, and median 

fasting insulin and glucose levels were 9.62 uU/ml and 93 mg/dL, respectively, indicative of 

a population at risk for diabetes (Table 7).  

 

Table 7. Demographic characteristics and baseline measurements of studied participants 

from PolRed cohort 

Characteristics and measurements All participants (n = 446) 

Female [n] 245 (54.9%) 

Age (years) 42.54 (30.33, 55.73) 

BMI (kg/m2) 26.87 (24.04, 30.85) 

FG (mg/dl) 101 (95, 110) 

FI (uU/ml) 10.78 (8.50, 14.75) 
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6. Comparison of Metabolic Parameters at Baseline and Follow-up 

 

Table 8 compares the prediabetic population's metabolic parameters at baseline and follow-

up. The variables that were statistically significant (highest to lowest) after adjustment for 

multiple testing are: are fasting glucose, SF, FM, IPAQ, FFM, HbA1c, VF, two-hour glucose 

during OGTT (2-h glucose), VAT/SAT ratio, BMI, fasting insulin, MM, 2-hour insulin, and 

Chol. P-values of <0.05 are in bold and reflect significance after adjustment for multiple 

testing. 

 

 Table 8. Description and comparison of metabolic variables in the prediabetic cohort 

between baseline and the follow-up 

 

 

 

 

 

Metabolic Parameter 
Baseline Follow-up P§ 

Median (IR) Median (IR) 

BMI (kg/m2) 26.87 (24.04, 30.85) 27.51 (24.36, 31.780) 7.64E-13 

FFM (kg) 53.92 (48.74, 61.52) 50.74 (44.55, 62.16) 1.13E-21 

FM (kg) 23.25 (20.06, 28.23) 26.82 (21.22, 36.14) 1.73E-24 

MM (kg) 24.98 (21.17, 30.3) 24.85 (21.15, 32.58) 0.0010 

VF (cm3) 82.50 (65, 101) 112 (72.25, 152) 3.94E-15 

SF (cm3) 145.50 (117, 184) 249 (180.25, 318.75) 1.32E-45 

VAT/SAT ratio 0.54 (0.44, 0.64) 0.42 (0.33, 0.56) 3.82E-13 

IPAQ (min/week) 1344 (240, 4306) 5368 (2530, 11546) 3.90E-24 

Fasting glucose (mg/dl) 101 (95, 110) 109 (98, 121) 8.10E-46 

2-hour glucose (mg/dl) 103 (86, 114) 112 (94.25, 122.75) 1.50E-14 

HbA1c (%) 5.40 (5.10, 5.70) 5.50 (5.20, 5.80) 3.82E-15 

Fasting insulin (uU/ml) 10.78 (8.50, 14.75) 11.87 (9.40, 15.67) 0.0006 

2-hour insulin (uU/ml) 29.98 (17.17, 53.84) 34.11 (22.23, 49.89) 0.0154 

Chol (mg/dL) 188 (165, 221) 194 (169, 220) 0.0276 

TG (mg/dL) 91 (67.25, 133.00) 96.90 (71.25, 143.00) 0.0918 

HDL (mg/dL) 59.70 (50.42, 68.00) 57.5 (47, 70) 0.2003 

LDL(mg/dL) 109.60 (83.25, 137.40) 108.80 (87.40, 138.30) 0.0760 
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7. Construction of Polygenic Scores for T2D 

 

In Tables 9 and 10, the genetic variants included in the PRSs are described, resulting in a 

T2D PRS of 68 SNPs and an obesity PRS of 21 SNPs. The mean for the T2D PRS in the 

prediabetic cohort was 1.03 (range: 0.23–1.64) with an SD of 0.30 (Figure 3A). The mean 

for the obesity PRS in the prediabetic cohort was 1.37 (range: 0.45–2.24) with an SD of 0.35 

(Figure 3B). 

 

Table 9. Genetic variants included in the T2D PRS 

SNP Locus 
CH

R 
Pos 

Alt 

Allel 
β 

Odd 

Rati 
MAF P-value N 

rs3101336 NEGR1 1 72751185 C 0.018 1.018 0.450 3.07E-02 939912 

rs2568958 NEGR1 1 72765116 A 0.022 1.022 0.438 1.64E-04 1082380 

rs2815752 NEGR1 1 72812440 A 0.022 1.022 0.388 4.05E-04 1084120 

rs10913469 SEC16B 1 177913519 C 0.032 1.033 0.163 1.74E-12 1073630 

rs340874 PROX1 1 214159256 C 0.047 1.048 0.475 6.11E-32 1081640 

rs2605100 LYPLAL1 1 219644224 G 0.030 1.031 0.213 3.75E-07 1090350 

rs12022722 LYPLAL1 1 219651133 T 0.020 1.020 0.413 7.57E-06 917427 

rs2820464 LYPLAL1 1 219693220 A -0.029 0.972 0.175 4.82E-10 927501 

rs2785980 LYPLAL1 1 219700519 C -0.031 0.969 0.175 1.30E-13 1039880 

rs4846567 SLC30A10 1 219750717 T -0.033 0.967 0.125 1.17E-15 1078840 

rs6548238 TMEM18 2 634905 C 0.054 1.055 0.113 1.66E-21 1083220 

rs7561317 TMEM18 2 644953 G 0.056 1.058 0.238 2.67E-22 1023140 

rs780094 GCKR 2 27741237 C 0.053 1.055 0.488 2.05E-34 1082280 

rs13389219 GRB14 2 165528876 T -0.054 0.947 0.400 5.98E-35 1080230 

rs7607980 GRB14 2 165551201 C -0.068 0.935 0.138 1.75E-19 851502 

rs1801282 PPARG 3 12393125 G -0.022 0.978 0.263 4.85E-02 18252 

rs11708067 ADCY5 3 123065778 G -0.072 0.930 0.100 1.06E-44 756464 

rs11920090 SLC2A2 3 170717521 A -0.027 0.974 0.188 1.47E-03 952836 

rs4402960 IGF2BP2 3 185511687 T 0.096 1.101 0.425 4.15E-122 1088690 

rs7647305 ETV5 3 185834290 C 0.026 1.027 0.213 7.70E-07 965163 

rs10938397 GNPDA2 4 45182527 G 0.038 1.039 0.388 5.11E-17 1048050 

rs10946398 CDKAL1 6 20661034 C 0.113 1.120 0.375 5.97E-144 1085220 

rs2844479 AIF1 6 31572956 C 0.026 1.027 0.500 4.49E-09 1078460 

rs2260000 PRRC2A 6 31593476 G 0.020 1.020 0.375 2.71E-05 930840 

rs1077393 BAG6 6 31610529 G 0.019 1.019 0.500 1.41E-04 1081460 

rs2191349 DGKB 7 15064309 T 0.051 1.053 0.488 1.23E-41 1081160 

rs4607517 YKT6 7 44235668 A 0.032 1.032 0.088 2.65E-10 1082060 

rs4731702 KLF14 7 130433384 T -0.037 0.964 0.475 1.09E-20 1075480 

rs972283 KLF14 7 130466854 G 0.035 1.036 0.463 5.05E-20 1067780 

rs13266634 SLC30A8 8 118184783 T -0.091 0.913 0.388 2.45E-124 1181190 



36 

 

rs11558471 SLC30A8 8 118185733 G -0.088 0.916 0.313 8.78E-106 1082770 

rs7034200 GLIS3 9 4289050 A 0.040 1.041 0.488 1.20E-23 1070410 

rs10811661 GLIS3 9 22134094 C -0.140 0.869 0.113 2.88E-146 930908 

rs1111875 HHEX 10 94462882 T -0.093 0.912 0.388 7.30E-95 938378 

rs5015480 HHEX 10 94465559 T -0.089 0.915 0.388 1.64E-128 1069430 

rs7923837 HHEX 10 94481917 A -0.094 0.911 0.350 1.62E-75 888616 

rs10885122 ADRA2A 10 113042093 G 0.024 1.024 0.125 1.03E-05 1082070 

rs7901695 TCF7L2 10 114754088 C 0.207 1.230 0.313 5.82E-226 209644 

rs4506565 TCF7L2 10 114756041 T 0.216 1.241 0.313 6.14E-229 208956 

rs7903146 TCF7L2 10 114758349 T 0.235 1.265 0.275 2.64E-97 249463 

rs5215 KCNJ11 11 17408630 T -0.056 0.945 0.363 5.74E-52 1192080 

rs4074134 BDNF 11 27647285 T -0.023 0.978 0.150 1.59E-05 937741 

rs4923461 BDNF 11 27656910 G -0.019 0.981 0.150 3.05E-05 931716 

rs925946 BDNF 11 27667202 G 0.000 1.000 0.363 2.44E-05 951966 

rs10501087 BDNF 11 27670108 C -0.023 0.977 0.150 2.81E-06 934,105 

rs6265 BDNF 11 27679916 T -0.022 0.978 0.138 9.00E-07 1169040 

rs10835211 BDNF 11 27701365 A 0.022 1.103 0.213 1.83E-02 818173 

rs11605924 CRY2 11 45873091 C -0.021 0.979 0.450 4.96E-08 964253 

rs10838738 MTCH2 11 47663049 G 0.013 1.013 0.363 5.75E-03 1085580 

rs174550 FADS1 11 61571478 C -0.027 0.973 0.350 1.20E-10 1019910 

rs10830963 MTNR1B 11 92708710 G 0.061 1.063 0.225 7.36E-43 1059540 

rs7138803 BCDIN3D 12 50247468 A 0.023 1.023 0.425 1.35E-09 1089630 

rs8049439 ATXN2L 16 28837515 C 0.019 1.019 0.413 2.76E-05 1191610 

rs4788102 SH2B1 16 28873398 A 0.022 1.022 0.413 8.70E-06 933067 

rs7498665 SH2B1 16 28883241 G 0.022 1.023 0.400 1.86E-06 1024050 

rs6499640 FTO 16 53769677 A 0.027 1.027 0.425 5.97E-08 1080780 

rs8050136 FTO 16 53816275 A 0.094 1.098 0.488 8.61E-102 1090360 

rs3751812 FTO 16 53818460 T 0.096 1.100 0.488 2.47E-76 935802 

rs9939609 FTO 16 53820527 A 0.092 1.096 0.488 5.44E-131 1063990 

rs7190492 FTO 16 53828752 G 0.048 1.049 0.325 8.44E-18 937716 

rs8044769 FTO 16 53839135 C 0.061 1.062 0.438 2.73E-31 937714 

rs633265 MC4R 18 57831468 T 0.039 1.040 0.413 1.05E-18 931300 

rs1350341 MC4R 18 57842533 A 0.038 1.039 0.400 5.37E-18 926826 

rs17782313 MC4R 18 57851097 C 0.055 1.057 0.238 1.46E-35 1088670 

rs12970134 MC4R 18 57884750 A 0.050 1.051 0.300 2.83E-28 1089600 

rs29941 KCTD15 19 34309532 G 0.001 1.001 0.338 1.36E-04 1082030 

rs11084753 KCTD16 19 34322137 G 0.011 1.011 0.363 2.61E-03 1047670 

rs2287019 QPCTL 19 46202172 T 0.021 1.021 0.213 1.00E-04 1149250 

CHR = Chromosome, Pos = position based on human genome 19, MAF = minor allele 

frequency, P value = statistical significant associations of SNPS in GWAS for Obesity[90], 

N = Effective sample size from all the dataset where the P-value was significant. 
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Table 10. Genetic variants included in the Obesity PRS 

SNP Locus CHR Pos 
Alt 

Allele 
β 

Odd 

Ratio 
MAF P-value N 

rs7561317 TMEM18 2 644953 G 0.141 1.151 0.2451 1.38E-04 11743 

rs10938397 GNPDA2 4 45182527 G 0.099 1.104 0.4549 2.60E-04 11743 

rs7903146 TCF7L2 10 114758349 T -0.101 0.904 0.2280 3.16E-03 11743 

rs4074134 BDNF 11 27647285 T -0.163 0.850 0.2280 7.37E-06 11743 

rs4923461 BDNF 11 27656910 G -0.163 0.850 0.2232 6.98E-06 11743 

rs925946 BDNF 11 27667202 G -0.088 0.915 0.2610 1.88E-03 11743 

rs10501087 BDNF 11 27670108 C -0.162 0.850 0.2220 8.07E-06 11743 

rs6265 BDNF 11 27679916 T -0.164 0.849 0.2061 1.17E-05 11743 

rs10835211 BDNF 11 27701365 A 0.098 1.103 0.1915 2.04E-03 11743 

rs8049439 ATXN2L 16 28837515 C 0.087 1.091 0.4305 1.39E-03 11743 

rs4788102 SH2B1 16 28873398 A 0.094 1.099 0.4256 5.71E-04 11743 

rs7498665 SH2B1 16 28883241 G 0.094 1.099 0.4207 5.65E-04 11743 

rs8050136 FTO 16 53816275 A 0.205 1.228 0.4915 9.23E-14 11743 

rs3751812 FTO 16 53818460 T 0.206 1.229 0.4902 6.42E-14 11743 

rs9939609 FTO 16 53820527 A 0.207 1.231 0.4890 5.07E-14 11743 

rs7190492 FTO 16 53828752 G 0.126 1.134 0.3232 5.28E-06 11743 

rs8044769 FTO 16 53839135 C 0.162 1.176 0.4195 1.76E-09 11743 

rs9921518 IRX3 16 54494424 G -0.105 0.900 0.2488 6.11E-03 11743 

rs17782313 MC4R 18 57851097 C 0.102 1.107 0.1768 3.42E-03 11743 

rs12970134 MC4R 18 57884750 A 0.099 1.104 0.2134 3.66E-03 11743 

rs29941 KCTD15 19 34309532 G 0.061 1.063 0.3073 2.77E-02 11743 

CHR = Chromosome, Pos = position based on human genome 19, MAF = minor allele 

frequency, P value = statistical significant associations of SNPS in GWAS for Obesity[90] 

,N = Effective sample size, DataSet: FinnGen 2018 GWAS: European ancestry[126]. 
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Figure 3. Distribution of polygenic risk scores (PRSs) for T2D (A) and obesity (B) across 

446 prediabetic individuals in PolRed. 

 

 

 

 

 



39 

 

8. Association Between T2D PRS and Baseline Metabolic Parameters 

 

Table 11 shows the associations between T2D PRS and metabolic parameters at baseline. At 

a nominal significance of P<0.05 after adjustment for multiple testing, the T2D PRS was 

associated with BMI, FFM, FM, fasting glucose, and fasting insulin. After testing, the T2D 

PRS was not significantly associated with MM, VF, SF, VAT/SAT ratio, IPAQ, 2-hour 

glucose, HbA1c, 2-hour insulin, Chol, TG, HDL, or LDL (Table 10). β values are reported 

per SD of PRS. P-values of <0.05 are in bold and reflect significance after adjustment for 

multiple testing. 

 

Table 11. Association of T2D PRS with the baseline metabolic parameters in PolRed. 

Metabolic Parameter β (95% CI) P§ 

BMI (kg/m2) 0.0066 (-0.0020, 0.0112) 0.0053 

FFM (kg) 0.0029 (-0.0001, 0.0056) 0.0394 

FM (kg) 0.0028 (-0.0003, 0.0053) 0.0293 

MM (kg) -0.0045 (-0.0091, 0.0001) 0.0535 

VF (cm3) -0.0004 (-0.0009, 0.0001) 0.0662 

SF (cm3) -0.0003 (-0.0007, 0.0001) 0.1360 

VAT/SAT ratio -0.0544 (-0.1436, 0.0348) 0.2310 

IPAQ (min/week) 0.0002 (-0.0002, 0.0005) 0.4450 

Fasting glucose (mg/dl) 0.0024 (-0.0001, 0.0047) 0.0451 

2-hour glucose (mg/dl) 0.0001 (-0.0008, 0.0009) 0.8990 

HbA1c (%) -0.0171 (-0.0629, 0.0288) 0.4650 

Fasting insulin (uU/ml) 0.0033 (-0.0003, 0.0063) 0.0320 

2-hour insulin (uU/ml) -0.0001 (-0.0008, 0.0006) 0.7740 

Chol (mg/dL) 0.3426 (-0.8705, 1.5558) 0.5790 

TG (mg/dL) -0.0683 (-0.3109, 0.1744) 0.5800 

HDL (mg/dL) -0.3415 (-1.5546, 0.8716) 0.5800 

LDL (mg/dL) -0.3428 (-1.556, 0.8704) 0.5790 
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9. Association Between Obesity PRS and Baseline Metabolic parameters 

 

The associations between obesity PRS and baseline metabolic parameters are shown in Table 

12. After adjustment for multiple testing, obesity PRS was associated with BMI with nominal 

significance (P<0.05). Since the beta coefficient was positive, each SD increase in PRS was 

associated with a rise of 0.0141 kg/m2 in BMI. After testing, no significant associations were 

found between obesity PRS and FFM, FM, MM, VF, SF, VAT/SAT ratio, IPAQ, Fasting 

glucose, 2-hour glucose, HbA1c, fasting insulin, 2-hour insulin, Chol, TG, HDL and 

LDL(Table 12). β values are reported per SD of PRS. P§ values of 0.05 are in bold and reflect 

significance after adjustment for multiple testing. 

 

Table 12. Association of Obesity PRS with the baseline metabolic parameters in PolRed 

Metabolic Parameter β (95% CI) P§ 

BMI (kg/m2) 0.0141 (-0.0028, 0.0255) 0.0145 

FFM (kg) 0.0027 (-0.0259 , 0.0312) 0.8539 

FM (kg) 0.0043 (-0.0039 , 0.0126) 0.3016 

MM (kg) -0.0057 (-0.0522 , 0.0409) 0.8111 

VF (cm3) 0.0013 (-0.0006 , 0.0032) 0.1773 

SF (cm3) -0.0008 (-0.0020 , 0.0005) 0.2489 

VAT/SAT ratio -0.2228 (-0.4980 , 0.0523) 0.1121 

IPAQ (min/week) -0.0001 (-0.0006 , 0.0003) 0.5656 

Fasting glucose (mg/dl) -0.0033 (-0.0073 , 0.0006) 0.0978 

2-hour glucose (mg/dl) 0.0003 (-0.0012 , 0.0019) 0.6857 

HbA1c (%) 0.0371 (-0.0256 , 0.0998) 0.2449 

Fasting insulin (uU/ml) 0.0017 (-0.0029 , 0.0063) 0.4560 

2-hour insulin (uU/ml) 0.0004 (-0.0009 , 0.0017) 0.5303 

Chol (mg/dL) 0.8328 (-0.5718 , 2.2374) 0.2445 

TG (mg/dL) -0.1660 (-0.4469 , 0.1149) 0.2460 

HDL (mg/dL) -0.8329 (-2.2374 , 0.5716) 0.2444 

LDL(mg/dL) -0.8327 (-2.2373 ,0.5720) 0.2445 
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10. Association Between T2D PRS and Changes in Metabolic Parameters 

 

Table 13 shows the associations between the T2D PRS and the changes in metabolic 

parameters after follow-up. The T2D PRS was associated with Δ FM at a nominal 

significance of P<0.05 after adjustment for multiple testing. As the beta coefficient is 

positive, for every SD increasing in the PRS, Δ FM will increase 0.0049 kg. After the testing, 

a significant association was not found between T2D PRS and Δ in FFM, MM, VF, SF, 

VAT/SAT ratio, IPAQ, Fasting glucose, 2-hour glucose, HbA1c, Fasting insulin, 2-hour 

insulin, Chol, TG, HDL and LDL(Table 13). β values are reported per SD of PRS. P§ values 

of 0.05 are in bold and reflect significance after adjustment for multiple testing. 

 

Table 13. Association of T2D PRS with changes in metabolic parameters after follow-ups 

with the prediabetic cohort in PolRed 

Metabolic Parameter β (95% CI) P§ 

Δ FFM (kg) 0.0017 (-0.0029, 0.0063) 0.462 

Δ FM (kg) 0.0049 (-0.0006, 0.0091) 0.025 

Δ MM (kg) 0.0001 (-0,0004, 0.0002) 0.548 

Δ VF (cm3) 0.0001 (-0.0009, 0.0012) 0.802 

Δ SF (cm3) 0.0001 (-0.0004, 0.0006) 0.738 

Δ VAT/SAT ratio -0.0369 (-0.1955, 0.1216) 0.647 

Δ IPAQ (min/week) 0.0001 (-0,0004, 0.0002) 0.269 

Δ Fasting glucose (mg/dl) -0.0010 (-0.0034, 0.0013) 0.394 

Δ 2-hour glucose (mg/dl) -0.0004 (-0.0015, 0.0007) 0.467 

Δ HbA1c (%) 0.0492 (-0.0242, 0.1226) 0.188 

Δ Fasting insulin (uU/ml) 0.0011 (-0.0024, 0.0045) 0.548 

Δ 2-hour insulin (uU/ml) 0.0002 (-0.008, 0.0012) 0.650 

Δ Chol (mg/dL) 0.0063 (-0.0133, 0.0259) 0.531 

Δ TG (mg/dL) -0.0013 (-0.0053, 0.0026) 0.507 

Δ HDL (mg/dL) -0.0066 (-0.0261, 0.0130) 0.511 

Δ LDL(mg/dL) -0.0065 (-0.0261, 0.0132) 0.518 

Δ FFM (kg) 0.0017 (-0.0029, 0.0063) 0.462 
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11. Association Between Obesity PRS and Changes in Metabolic Parameters 

 

Table 14 summarizes the associations between the obesity PRS and changes in metabolic 

parameters after the follow-up. A high obesity PRS is associated with Δ FM and Δ 2-hour 

glucose at a nominal significance of P<0.05 after adjustment for multiple testing. As their 

beta coefficients are positive, for every increase in SD in the PRS, Δ FM increased by 0.0056 

kg, and Δ 2-hour glucose increased by 0.0013 mg/dl. After testing, obesity PRS was not 

significantly associated with Δ FFM, MM, VF, SF, VAT/SAT ratio, IPAQ, fasting glucose, 

HbA1c, Fasting insulin, 2-hour insulin, Chol, TG, HDL, or LDL(Table 14). β values are 

reported per SD of PRS. P§ values of 0.05 are in bold and reflect significance after 

adjustment for multiple testing. 

 

Table 14. Association of obesity PRS with changes in metabolic parameters after follow-

up in PolRed 

 

 

Metabolic Parameter β (95% CI) P§ 

Δ FFM (kg) 0.0021 (-0.0032, 0.0074) 0.4383 

Δ FM (kg) 0.0056 (-0.0008, 0.0105) 0.0231 

Δ MM (kg) 0.0002 (-0.0002, 0.0005) 0.3184 

Δ VF (cm3) 0.0002 (-0.0002, 0.0005) 0.7600 

Δ SF (cm3) 0.0001 (-0.006, 0.0006) 0.8850 

Δ VAT/SAT ratio 0.0205 (-0.1619, 0.2029) 0.8252 

Δ IPAQ (min/week) 0.0001 (-0.0004, 0.0002) 0.4108 

Δ Fasting glucose (mg/dl) 0.0020 (-0.0007, 0.0047) 0.1446 

Δ 2-hour glucose (mg/dl) 0.0013 (-0.0001, 0.0026) 0.0341 

Δ HbA1c (%) 0.0014 (-0.0830, 0.0859) 0.9732 

Δ Fasting insulin (uU/ml) -0.0024 (-0.0064, 0.0016) 0.2316 

Δ 2-hour insulin (uU/ml) 0.0007 (-0.0004, 0.0018) 0.2273 

Δ Chol (mg/dL) 0.0168 (-0.0057, 0.0394) 0.1434 

Δ TG (mg/dL) -0.0036 (-0.0081, 0.0009) 0.1167 

Δ HDL (mg/dL) -0.0158 (-0.0383, 0.0067) 0.1685 

Δ LDL(mg/dL) -0.0164 (-0.0390, 0.0061) 0.1533 

Δ FFM (kg) 0.0021 (-0.0032, 0.0074) 0.4383 
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12. Association of Genotypes Frequencies with Changes in Metabolic Parameters 

 

Tests were run to check if the genotypes’ frequencies significantly affected all 17 metabolic 

parameters. All the SNPs included in the T2D PRSs and obesity PRSs (69 SNPs in total) 

were analyzed, and the metabolic parameters were stratified by investigated genotypes with 

a significant association or a tendency (Table 15). No significant deviation from the Hardy-

Weinberg equilibrium was reported for any investigated SNPs. 

It was observed that AA genotype carriers of rs10838738 presented statistically significantly 

difference at Δ 2-hour glucose and Δ 2-hour insulin  (Table 15). No other significant 

differences were observed between the different genotypes; however, a tendency toward a 

lower Δ FM and Δ VF was noticed in GG genotype carriers of rs2260000. Between carriers 

of investigated genetic variants in rs7647305, a trend in Δ 2-hour glucose and Δ IPAQ was 

seen. Another tendency toward a lower Δ 2-hour glucose in GG genotype carriers of rs29941 

was noticed (Table 15). 

 

Table 15. Description and comparison of the prediabetic cohort participants stratified by 

rs10838738, rs2260000, rs7647305, and rs29941 genotypes. 

rs10838738 A/A A/G G/G P§ 

N 143 229 83  

Δ 2-hour glucose (mg/dl) 19 (3, 35) 13 (-6.75, 33) 8 (-8, 23.5) 0.017 

Δ 2-hour insulin (uU/ml) 5.88 (-5.85, 21.34) 3.74 (-10.25, 

22.49) 

-1.68 (-26.02, 

10.02) 

0.001 

rs2260000 A/A A/G G/G P§ 

N 151 223 81  

Δ FM (kg) 5.27 (0.50, 10.17) 4.87 (1.32, 8.96) 2.40 (-1.92, 6.45) 0.051 

Δ VF (cm3) 35.75 (-8.25, 73) 29 (-6, 67) 8 (-29.50, 53.50) 0.068 

rs7647305 C/C C/T T/T P§ 

N 309 126 20  

Δ 2-hour glucose (mg/dl) 13.3 (-1, 35) 10.5 (-11.8, 25) 9 (-30, 27.5) 0.077 

Δ IPAQ (min/week) 2712.5 (-604.9, 

6962.2) 

2601 (-23.3, 

9537.3) 

6463 (2470, 

12901) 

0.077 

rs29941 A/A A/G G/G P§ 

N 38 204 213  

Δ 2-hour glucose (mg/dl) 20.5 (12, 33) 15 (0.75, 36.25) 9.50 (-9.50, 26.25) 0.068 
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The AA genotype carriers of rs10838738 presented significantly greater Δ 2-hour glucose 

(Figure 4A) than the AG and GG genotypes. The Δ in 2-hour insulin  (Figure 4B) had a 

significantly smaller difference when comparing the GG genotype and the AG and AA 

genotypes. By analyzing the differences between the rs2260000 genotypes, we observed that 

the GG genotype carriers presented a significantly lower Δ FM (Figure 5A) and Δ VF (Figure 

5B) compared to the AA and AG genotype carriers. The CC genotype carriers of rs7647305 

presented significantly greater Δ in 2-hour glucose (Figure 6A) than CT genotypes. The Δ 

IPAQ (Figure 6B) had a significantly lower difference when comparing the CC genotype to 

the TT genotype. The differences between rs29941 genotypes show that AG genotype 

carriers presented significantly greater Δ in 2-hour glucose (Figure 7) than GG genotype 

carriers did. 
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Figure 4. Association of genotype rs10838738 with (A) Δ 2-hour glucose (mg/dl) and (B) 

Δ 2-hour insulin (uU/ml). 

 

A) 

B) 
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Figure 5. Association of genotype rs2260000 with (A) Δ FM (kg) and (B) Δ VF (cm3). 
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Figure 6. Association of genotype rs7647305 with (A) Δ 2-hour glucose (mg/dl) and (B) Δ 

IPAQ (min/week). 
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Figure 7. Association of genotype rs29941 with Δ 2-hour glucose (mg/dl) 
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VII. Discussion 

 

1. Systematic review 

 

The PRS support the diagnosis of the disease; they are consistent throughout life; thus they 

could be an effective tool to determine whether a particular patient has any form of diabetes. 

Thanks to them, it is less difficult to predict the risk of prediabetes [127]. As previously noted 

in the analysis of T1D PRS in table 4, except for the cohort of African-Americans [96], the 

AUC values were more significant than 0.80, implying that all PRSs had sufficient sensitivity 

and specificity to be able to differentiate patients with T1D. Genetic factors contribute 

significantly to the prevention of T1D by providing a reliable risk score. PRS for T1D can 

diagnose young diabetic patients in European cohorts requiring insulin therapy, which is 

essential for accurately classifying patients when clinical factors are misdiagnosed. On table 

6, the use of PRS as a tool to distinguish diabetes subtypes as an additional advantage is 

shown. The latest studies have shown that T1D PRS are excellent at distinguishing patients 

with T1D from T2D[93] and Monogenic diabetes [94]. T1D PRS that has been validated for 

a Caucasian population might be possible to use in other ethnicities. This is being researched 

and if true could be a good option [98]. Proper diagnosis of T1D could come about as a result 

of using the PRS and could help lead to lifestyle changes and medications to slow down the 

progression of T1D. After a thorough review, it was found that the PRSs need improvements 

to be useful in a real-world application. As shown in Table 5, all of the studies in the last 

decade have said that clinical risk factors can predict T2D well and that there is almost no 

improvement when adding the PRS. Therefore more research needs to be done to fully 

understand how the PRS can be useful in diagnosing T2D. 

 

There are several obstacles to overcome for the PRSs to be taking part in clinical diagnosis, 

the first one is the lack of innovation in the generation of PRS for T2D. The primary goal of 

developing a PRS is to predict who will get T2D[128,129], which can be improved by using 

newer, more optimized equations in the logistic regression portion of the formula[130]. There 

are two ways to build a PRS model: tree-based and logistic regression based[131,132]. 

Regression-based methods use either polynomial parametric regression or non-parametric 

regression to create a line of data input and output. Tree-based methods use a binary split 

rule to create a correlation between data input and output[133–135]. Both of these methods 

have their flaws, but the tree-based is the preferred method because it is more accurate and 

has been used in risk prediction for cardiovascular diseases[136–139]. Combined with GWAS 
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data, machine learning techniques can improve polygenic trait prediction [140]. Another 

problem that can arise from population heterogeneity being underestimated is overfitting. 

The PRS must be calibrated, validated, and optimized for each separate population before it 

can be proven that the PRS is not fitting the data too well, producing results that are 

inaccurate[141]. To avoid producing an overfit prediction model, the point of reference is to 

use data outside of the sample set[26,142]. Most PRS created using Caucasian GWAS show 

bias due to allele drift compared to other ethnic groups, even when utilizing the same variants 

[75,143]. Therefore, it is necessary to develop generalized risk prediction methods and include 

more diverse participants in risk score studies[75]. It might be necessary to adapt an existing 

T2D PRS validated in Caucasian participants to other ethnicities to avoid overfitting and 

obtaining false positive results. The last problem taking our attention is the environmental 

effect on genetic studies. Gene-environment interactions (GxE) refer to the fact that the effect 

of genes on a disease can be different in different environments[144]. In most GWAS, it is 

assumed that there are no GxE interactions, which could mean that clinically significant risk 

factors might go undetected[145]. The environmental impact can be a bias in developing a 

T2D PRS. There are benefits to analyzing GxE interactions, such as discovering new loci of 

disease susceptibility [146–148]. These interactions have been proven to be identified well by 

PRS approaches[149,150].  

 

2. Polygenic risk scores for T2D and obesity 

 

Studies have shown that patients with prediabetes may develop coronary artery disease [151] 

and diastolic heart failure [152] before overt T2D. However, prediabetes can be managed by 

changing the patient's habits [153]. Therefore, it is important to identify patients with 

prediabetes and take appropriate measures to optimize glycemic control [42]. From the 

PolReD study, 446 subjects who were prediabetic but did not have a diagnosis of T2D at 

baseline, were selected. The subjects’ characteristics at baseline, are described in table 7 and 

give us an insight into the general information of the population. The median age of the 

prediabetes cohort was 42.54 years, which is consistent with previous findings showing that 

prediabetes is more common in middle age (25-44 years) and diabetes is more common in 

the 45-60 year age group[154]. It shows that the prevalence of diabetes increases with age. 

The median BMI was 26.87 kg/m2, placing the cohort in the overweight zone (25 < BMI < 

30)[155]. The median values of fasting glucose and fasting insulin are 101 mg/dl and 10.78 

uU/ml, respectively. According to Polish Diabetes Association and American Diabetes 

Association, prediabetes has been defined by the presence of impaired fasting glucose (IFG) 
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and/or impaired glucose tolerance (IGT) and/or HbA1C (5.7-6.4%). IFG is defined as fasting 

plasma glucose (FPG) levels from 100 to 125 mg/dL (from 5.6 to 6.9 mmol/l) and IGT as 2-

h plasma glucose (PG) levels during 75-g OGTT from 140 to 199 mg/dL. 

 

After comparing the metabolic parameters at baseline and follow-up, using the Wilcoxon 

signed-rank test for paired samples, 13 of the 17 parameters were statistically significant 

after adjustment for multiple testing, as seen in table 8. The increase of the values on the 

metabolic parameters is expected as studies have shown that with aging, metabolic 

disturbances progress, especially when they are not treated, like in the case of our cohort 

[156]. From the 13 statically significant metabolic parameters, FFM, MM, and VAT/SAT 

ratio decrease their median values, and BMI, FM, VF, SF, IPAQ, Fasting glucose, 2-hour 

glucose, HbA1c, Fasting insulin and 2-hour insulin, increase their median values. The four 

parameters that are not statistically significant were Chol, TG, HDL and LDL. When 

comparing the values of the cohort to the guidelines of lipid profile, we can describe them as 

optimal for Chol (125 to 200mg/dL), TG (less than 150 mg/dL) and HDL ( 40 to 60 mg/dL), 

and above optimal (100 to 129 mg/dL) for LDL [157]. When these parameters’ values are 

imbalanced with the normal ones, the patient can suffer from dyslipidemia. This condition 

can result from diet, tobacco exposure, or genetics and can lead to cardiovascular disease 

with severe complications [158]. Lipid profile in prediabetes has been of research relevance 

recently. In contrast with our data, several studies on the Asian population conclude that 

prediabetics had a deranged lipid profile compared to normal healthy subjects [159,160]. 

This gives an exciting lead to continue studying lipids and their association with prediabetes 

in European cohorts. 

 

An approach for converting genetic data to a predictive measure of disease susceptibility is 

to add the risk effects of loci into a PRS. Following the guidelines published in 2020 [73], 

the construction of PRSs for T2D and obesity using genome-wide significant variants found 

in GWAS for T2D and obesity in PolRed's data was achieved. The methodology followed 

gave, as a result a weighted PRSs, which have been described as optimal compared to not 

weighted PRSs [161,162].  The normal distribution of the two PRSs in the prediabetic cohort 

was confirmed, and shown in two graphics with their mean and standard deviation, as seen 

in figure 3. It is also demonstrated that combining individual variants into a PRS can provide 

more information about T2D vulnerability patterns. Prediabetes and obesity are global 

epidemics with rapidly increasing mortality and morbidity. Obesity is a significant factor in 

the development of T2D; thus, there is a close relationship between them [47].  
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Multiple linear regression with adjustment for age and sex was done to find the associations 

between T2D PRS and baseline metabolic parameters (Table 11). After adjustment for 

multiple testing, associations were found between T2D PRS and BMI, FFM, FM, Fasting 

glucose and 2-hour glucose. The association found with BMI matches the findings of a study 

in a European cohort. Applying logistic regression to calculate odds and hazard ratios, the 

predictive effect of BMI for T2D incidence was found[163]. Similar results have been found 

when analyzing a study cohort from the United States[164]. A direct association between 

FFM and the risk of developing T2D hasn’t been described; nevertheless, the association 

between FFM and T2D remission in males was described at the begging of the year[165]. A 

research in 2021 described a FM association with the risk of developing T2D in childhood, 

concluding that an increase in childhood FM was more strongly associated with increased 

adult T2D risk than an increase in weight, independent of childhood height[166]. Overall, 

the correlation of prediabetes and T2D with adiposity in adults is a hot topic; the most up-to-

date research indicated that compared with people without diabetes, adults with prediabetes 

and T2D had significantly higher percentages of total fat. Furthermore, as the disease 

progresses, fat mass decreases in T2D patients [167]. As described before, the values of  

fasting glucose were in the range to be described as a prediabetic cohort; thus, their 

association with the risk of developing T2D was expected. It has been shown that the results 

included in table 11 are in accordance with other studies published; nevertheless, their 

replication and validation on European cohorts may be needed. Multiple linear regression 

with adjustment for age and sex was done to find the associations between obesity PRS and 

baseline metabolic parameters (Table 12). After adjustment for multiple testing, the only 

association was between the obesity PRS and BMI. The relationship between BMI and 

obesity has been widely researched, and the values of BMI described in table 7 are in 

accordance with values that classify our cohort as overweight [48,168]; therefore, the 

association was expected.  

 

The associations of a T2D PRS and changes over time in metabolic parameters in the 

prediabetic cohort of Polish Caucasians were done. Individuals with high T2D scores showed 

increased Δ FM. With each SD increase of PRS, Δ FM increased by 0.0049 kg (Table 13). 

The results are consistent with previously reported data [169,170]. In 2021, an association 

between weight change and FM change with prediabetes was found in African Americans 

and European Americans [171]. Using linear regression models, they discovered that Δ FM 

was a significant predictor of progression in the prediabetes cohort. In addition, a study on 

the association of prediabetes and T2D with adipose tissue in adults was reported in 2022. 
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Based on multivariate linear regression models, the researchers found an association between 

adults with prediabetes and increased FM[167]. In contrast to the results, a recently published 

study found associations of Δ FFM with risk for T2D in a Hispanic cohort [172]. Another 

study that focus its research on the genetic variations in the gene KCNJ11, included in the 

T2D PRS. KCNJ11 has been associated with prediabetes in an Asian population[173]; the 

research of it in an extensive study will be of great interest to understand its disease risk 

predictor power. 

 

For the second PRS, high obesity PRS was associated with Δ FM and Δ 2-hour glucose. For 

each SD increase in PRS, ΔFM and Δ 2-hour glucose increased by 0.0056 kg and 0.0013 

mg/dL, respectively (Table 14). Obesity has become a significant problem due the increased 

number of patients and some metabolic complications. The FTO gene was the first gene 

identified to link FM and obesity in humans[174,175]. Several MC4R gene variants have 

been associated with FM, weight, and obesity risk [176,177]. Of the 21 SNPs included in our 

study, 7 had loci on these genes; therefore, the associations shown in this study are consistent 

with previous publications. In terms of 120-minute blood glucose changes, 2-hour 

postprandial blood glucose levels are associated with the development of metabolic diseases 

such as obesity, T2D,  and cardiovascular disease[178] in patients with T2D and prediabetes 

[179]. Both of our PRSs were associated with changes in FM, which may be related to the 

20 SNP overlap between T2D and obesity scores. 

 

3. Genotypes frequencies 

 

It was observed that MTCH2 rs10838738 was significantly associated with metabolic 

parameters in the study group (Table 15). From the data, it was found that carriers of the 

rs10838738 homozygous AA genotype exhibited more significant changes at 2-hour glucose. 

In contrast, the homozygous GG genotype exhibited significantly smaller changes at 2-hour 

insulin (Figure 4). In contrast to the results, a previous study showed that the homozygous 

genotype for the risk allele G was not significantly associated with 120-minute blood glucose 

change but with higher BMI [180]. The SNP MTCH2 (rs10838738) has been reported to 

affect gene expression in visceral adipose tissue [181]. However, as shown in our study and 

some previous studies[182], there is little evidence that this SNP is significantly associated 

with diabetes. Extensive research is required to discover and demonstrate the impact of this 

SNP on T2D evolution. We observed a trend for PRRC2A rs2260000 according to the 

metabolic parameters of the study group (Table 15). The alternative allele GG genotype 
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homozygous carriers slightly varied in FM and VF (Figure 5). No data have been published 

on the association between PRRC2A rs2260000 and T2D. Nonetheless, recent studies have 

linked variants in the PRRC2A gene with obesity[183] and T1D risk [184]. Furthermore, 

consistent with our results, current data show a relationship between this gene and human 

adipocytes isolated from VF[185,186]. Since 2020, articles researching the function of 

PRRC2A have been published; therefore, trends in research can be observed. The next trend 

observed was on the gene ETV5 rs7647305 according to the metabolic parameters of the 

study group (Table 15). We found that homozygous carriers of the alternative allele CC 

genotype had very large changes in 2-hour glucose and very small changes in IPAQ (Figure 

6). The association between this gene and T2D has been described previously. One study 

found an association between ETV5 and hypertension [187], and the researchers noted that 

SNPs that predict the development of hypertension could also predict T2D According to 

linear model analysis, a recent study found that the ETV5 affects B cell dysfunction and 

pathophysiology in T2D [188]. The association of this SNP with metabolic parameters has 

rarely been studied. A recent work revealed a critical role for ETV5 in regulating insulin 

secretion[189], while another study highlighted the importance of studying this gene to 

compare sedentary behavior with physical activity[190]. The last trend observed was for 

KCTD15 rs29941 according to the metabolic parameters of the study group (Table 15). From 

the data, we found that carriers of the AG genotype exhibited significant glucose changes at 

120 (Figure 7). The KCTD15 gene has previously been associated with the risk of obesity 

[191] and T2D[192,193]. In particular, KCTD15 rs29941 was significantly associated with 

fasting blood glucose [191] [181] and the risk of insulin resistance [192]. 

 

Among the strengths of the Ph.D. work dissertation is the fact that it was one of the first 

studies to research the associations of the changes in several metabolic parameters with T2D 

and obesity PRSs in Polish population. Additionally, its strengths are that it was based on a 

relatively large population. Although many risk factors for T2D have already been identified, 

early markers of transitioning from normal to prediabetes aren't yet identified[179]. This 

study could help explain why this is the case. Associations between PRSs and changes in 

metabolic traits related to T2D show how the genetic information of patients with prediabetes 

can be used to prevent the disease. The work also shows how the clinical environment can 

use the data of patients with prediabetes to prevent complications of metabolic syndrome, 

such as heart disease, obesity, and hypertension.  
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Nevertheless, there are also limitations in the study. One is the lack of long-term human 

studies to analyze the change in two-hour postprandial glucose and its association with the 

different genotypes described in our research. Additionally, a better understanding of the 

lack of association between other Δ metabolic parameters and PRSs needs to be researched. 

Only Caucasian participants were included in the study; further consideration of different 

ethnicities is necessary. The effect size estimates used to create the PRSs were based on data 

from European ancestry. This study didn’t consider the possibility of different effect sizes 

for diverse populations. As a result, the data shouldn’t be trusted without being replicated in 

additional multi-ethnic populations.  
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VIII. Conclusions 

 

 

1. Out of the 14 studies identified in the systematic review that developed PRSs, 11 were 

used to differentiate patients from controls, and three were used to discriminate between 

T1D and diabetes subtypes. These PRSs were assessed for accuracy using the AUC 

metric regardless of the data source, the panel of genes used, and genotyping strategies. 

To better predict diabetes, the use of PRS that combines clinical, environmental, and 

genetic interactions must be used. Creating a pipeline that translates findings into actual 

evidence is the first step in demonstrating PRS's clinical validity.  

 

 

2. Two PRSs were created, T2D PRS was made from 68 SNPs, and the obesity PRS 

included 21 SNPs. There is an overlap between genes implicated in the risk of developing 

T2D and those associated with the risk of obesity. The Δ FM is associated with T2D and 

obesity PRSs in a prediabetic cohort. The Δ glucose at 120 min is associated with 

obesity’s PRS. The findings are consistent with recent results demonstrating that an 

increase in the change of FM and obesity are closely related to insulin resistance and 

abnormalities in glucose metabolism and, therefore, T2D risk[194,195]. 

 

 

3. The AA genotype carriers of the gene MTCH2 (rs10838738) were significantly higher 

in Δ 2-hour glucose and Δ 2-hour insulin. The results may have practical clinical 

implications if confirmed in larger populations and among different ethnic groups. The 

associations found in this project could be considered a pilot study for producing a 

powerful tool for identifying individuals with an increased risk of complications at 

diagnosis.  
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