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Abstract 

An unprecedented wealth of biological data has been generated since the human and 

other genome projects were started. The huge request for raw data analysis and 

interpretation is being controlled by the evolving science of bioinformatics. Bioinformatics is 

defined as the application of computational tools and analysis approaches to capture and help 

to interpret results. It is an interdisciplinary field which harnesses computer science, 

mathematics, statistics, physics. It is essential for management of data in comprehensive 

medical research. 

This Ph.D. thesis deals with the topic of bioinformatic pipelines implemented for end-

to-end analysis of high-throughput sequencing data (DNA/RNA) in different research areas 

including cancer and assisted reproduction trough case studies. 

First, example studies from primary central nervous system lymphoma (PCNSL) and 

chronic lymphocytic leukemia (CLL) research fields will be presented with the aim of 

identifying disease related somatic variants (SNPs, short INDELs) from custom targeted gene 

panels to create mutation profiles. Next, the reduced-representation bisulfite sequencing 

method and its related bioinformatic analysis will be demonstrated for DNA CpG methylation 

profiling to better understand one of the most aggressive cancers, known as glioblastoma 

multiforme (GBM). Additional to DNA related changes, microRNAs have emerged as promising 

biomarkers that can contribute more effective to early detection of lung cancer. The analysis 

of global miRNAome in early-stage non-small cell lung cancer (NSCLC) patients will be showed 

for the development of accurate predictive biomarkers of relapse, following surgery. 

Infertility impacts the reproductive period of millions in the World and it influences their 

families and communities. In vitro fertilization helps in getting pregnant, embryo development 

and implantation, but also there is a high need for genetic examination before embryo 

transfer. Therefore, as the last application field, a comprehensive bioinformatic workflow for 

non-invasive pre-implantation genetic testing for aneuploidy (NIPGT-A) in assisted 

reproduction treatments will be introduced. 

The described bioinformatic workflows in my thesis are essential in better 

understanding the molecular background of the previously mentioned disorders. 

Key words: cancer, IVF, CLL, PCNSL, GBM, NCSCL, NIPGT-A, NGS, bioinformatics, workflow building, mutation 

profiling, methylome, CNVs, miRNAs 
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Polish abstract 

Niespotykane bogactwo danych biologicznych zostało wygenerowane od czasu 

rozpoczęcia Projektu poznania ludzkiego genomu (HGP, z ang. Human Genome Project) oraz 

innych projektów genomicznych. Odpowiedzią na ogromne zapotrzebowanie na analizę i 

interpretację surowych danych genetycznych jest dziedzina nauki nazwana bioinformatyką. 

Bioinformatyka jest definiowana jako zastosowanie narzędzi obliczeniowych i podejść 

analitycznych w celu generowania i pomocy w interpretacji wyników. Jest to 

interdyscyplinarna dziedzina nauki, która wykorzystuje matematykę, statystykę i fizykę. Jest 

niezbędna do zarządzania danymi w kompleksowych badaniach medycznych. 

Niniejsza praca doktorska dotyczy tematu bioinformatycznych protokołów 

analitycznych wdrożonych do kompleksowej analizy danych z sekwencjonowania o dużej 

przepustowości (DNA/RNA) w różnych obszarach badawczych, w tym nowotworach i 

wspomaganym rozrodzie, na konkretnych przykładach. 

W pierwszej kolejności przedstawione zostaną przykładowe badania z dziedziny 

pierwotnego chłoniaka ośrodkowego układu nerwowego (PCNSL) oraz przewlekłej białaczki 

limfocytowej (PBL ang. CLL), których celem jest identyfikacja somatycznych polimorfizmów 

pojedynczego nukleotydu (SNP) i małych insercji i delecji (INDELi) z paneli genów 

ukierunkowanych na konkretną chorobę w celu stworzenia profili mutacyjnych. Następnie 

zaprezentowana zostanie metoda analizy zmian w profilu i poziomie metylacji DNA (RRBS) i 

związana z nią analiza bioinformatyczna do profilowania metylacji DNA wysp CpG w celu 

lepszego zrozumienia jednego z najbardziej agresywnych nowotworów, znanego jako glejak 

wielopostaciowy (GBM). Oprócz zmian związanych z DNA, mikroRNA zostało uznane za 

obiecujące biomarkery, które mogą przyczynić się do bardziej efektywnego wykrywania raka 

płuc. Kolejny przedstawiony w pracy przykład to analiza mikroRNA u chorych na 

niedrobnokomórkowego raka płuca (NSCLC) we wczesnym stadium zaawansowania, która 

pozwoliła na opracowanie dokładnych biomarkerów predykcyjnych nawrotu choroby po 

operacji. 

Niepłodność wpływa na psychofizyczne funkcjonowanie milionów ludzi na świecie, na 

ich rodziny i społeczności. Zapłodnienie in vitro pomaga w zajściu w ciążę, rozwoju zarodka i 

implantacji, ale istnieje duże zapotrzebowanie na badania genetyczne przed transferem 

zarodka. Dlatego też jako ostatni obszar zastosowań, zostanie przedstawiony kompleksowy 
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bioinformatyczny protokół analityczny dla nieinwazyjnych przed-implantacyjnych badań 

genetycznych w kierunku aneuploidii (NIPGT-A) w zabiegach wspomaganego rozrodu. 

Opisane w mojej pracy dyplomowej bioinformatyczne protokoły analityczne są 

niezbędne w lepszym zrozumieniu molekularnego podłoża wcześniej wymienionych chorób i 

zaburzeń. 

 

Słowa kluczowe: nowotwory, Zapłodnienie pozaustrojowe, zapłodnienie in vitro (IVF), przewlekła białaczka 

limfocytowa (PBL, ang. CLL chronic lymphocytic leukemia), pierwotny chłoniak ośrodkowego układu nerwowego 

(PCNSL), glejak wielopostaciowy (GBM; łac. glioblastoma multiforme), niedrobnokomórkowy rak płuca (NSCLC), 

aneuploidia (NIPGT-A), sekwencjonowanie nowej generacji (NGS), bioinformatyka, bioinformatyczne protokoły 

analityczne, tworzenie profili mutacji, metylom, zmienność liczby kopii DNA (CNV), mikroRNA 
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Introduction 

Bioinformatics 

The significant decrease cost of high-throughput next-generation sequencing (NGS) 

during the past decade has made it available for a wider range of researchers. Using new NGS 

platforms, for instance Illumina NovaSeq 6000, such a large amount of data can be generated 

that cannot be processed with traditional methods. Bioinformatics workflows and pipelines 

are needed to extract information from sequencing data and obtain knowledge. The field of 

bioinformatics is growing every year almost exponentially as the number of applications and 

research data volume increases [Stephens et al., 2015]. Workflows consist of many separate 

steps starting with experimental design, through the initial check of raw data, and various 

quality control steps, all the way to final visualizations and results ready for interpretation. 

Workflows must be carefully designed, implemented and executed. A bioinformatics pipeline 

is a series of software algorithms that process raw data (within a workflow) and generate 

evaluable results from this data that researchers could interpret. The available basic 

workflows and best practices usually tackle only around one specific case and directly cannot 

be used elsewhere, or unique solution are needed. For this reason, workflows or algorithms 

specifically tailored to individual experiments need to be developed. 

Bioinformatics can be divided in two major parts based on the aim of the research 

[Hagen, 2000]. So called “sequencing bioinformatics” focuses on data related to the DNA or 

RNA sequence or its modifications. Mainly it deals with genomics and transcriptomics data to 

understand biological hypothesis. This interdisciplinary field combines computer science, 

biology, mathematics, statistics and medicine. To correctly answer questions, one must know 

the biological background as well as ways on how to get to the final conclusions. 

Bioinformatics has become a central part of many areas of the current biology. Until recently, 

bioinformaticians played a support role for wet-lab biologists but in past few years the 

research started to change direction and more teams are becoming bioinformatics-centered 

[Perkel, 2016]. Also, a bioinformatician can be focused on pure informatics, such as software 

and database development, or algorithm design. Nowadays, a lot of software tools and 

databases are available and new ones are introduced every year. 
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A combination of bioinformatics tools and visualizations results into workflow or 

pipeline. Because of the high number of available tools, databases, and a vast number of 

biological applications it is not straightforward to create an appropriate workflow that 

correctly answers the hypothesis. In addition to basic and established workflows, many 

experiments require careful adjustments or completely novel construction of pipelines which 

requires deep knowledge and much experience in all the details of bioinformatics and biology 

as well. What is more important than the generation of raw data and results is the 

interpretation. Several information sources, biological knowledge and often a good hunch and 

teamwork need to be combined if we want to get to the definitive answer [Kanehisa and Bork, 

2003]. 

The increasing complexity of results of omics analyses go together with problems about 

the reproducibility of experiments. When analysing large data sets, the main source of 

computational irreproducibility comes from a lack of good practice related to software and 

database usage [Brito et al., 2020; Masca et al., 2015; National Academies of Sciences, 

Engineering, and Medicine, 2016; Piccolo and Frampton, 2016]. Complexity grows even faster 

when all aspects of a given analysis are included. Small variations across computational 

platforms contribute to computational irreproducibility by producing numerical instability as 

well [Garijo et al., 2013]. This is particularly important to high-performance computational 

(HPC) environments that are routinely used for omics data analyses [Loman and Watson, 

2013]. Handling many software packages at the same time, some of which may be 

incompatible, is a big challenge. The conflicting demands of frequent software updates and 

maintaining the reproducibility of original results add another unwanted source of problems. 

Together with these issues, high-throughput usage of complex pipelines can also be burdened 

by the hundreds of intermediate files often produced by individual tools. Hardware 

fluctuations in these types of pipelines, combined with poor error handling, could result in 

considerable readout instability. In silico workflow management systems like Nextflow [di 

Tommaso et al., 2017] are designed to overcome these problems and are capable of large-

scale biological analyses. These systems enable faster implementation, prototyping and 

deployment of pipelines that combine complementary software packages. 

Since, this thesis will focus on various NGS-based applications, their background should 

be briefly introduced. 
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NGS applications 

One of the main advantages of NGS, in compared to other methods like Sanger 

sequencing or microarray, is that it is a sequence-it-all approach. Any kind and type of 

nucleotide sequence could be processed and read. NGS is not that sensitive to nucleotide 

quantity, quality and purity like current third-generation methods. Of course, generating good 

quality data from formalin-fixed paraffin-embedded (FFPE) tissue blocks, ultra-low input 

materials (e.g., single cells or ctDNA) or from samples with lower RNA integrity number could 

be challenging. Apart from the pros and cons these features make NGS a versatile tool for 

countless applications. Currently, there are more than 200 NGS applications 

[http://enseqlopedia.com/enseqlopedia/], and new applications are being published every 

year. Here, only the most common ones will be mentioned. 

DNA-Seq is historically one of the first applications of NGS. If the desired outcome is the 

complete DNA sequence of a genome, we talk about whole genome sequencing (WGS). We 

can either focus on an unknown sequence and try to reconstruct it using de novo assembly or 

we can re-sequence something already known and look for genetic variability, such as single 

nucleotide variants (SNV), insertions or deletions (INDEL) [Nielsen et al., 2011]. We can also 

aim at larger structural variations such as copy-number variants (CNV) [Hayes et al., 2013] or 

structural variants (SV) [Tattini et al., 2011]. Some genomes are relatively big, and most of the 

bioinformatic solution rely on coverage, it is not necessary to sequence the entire genome. It 

is enough to focus on smaller, more specific parts of the genome. If we interested in the 

nucleotide order of a shorter and more specific DNA fragment, we talk about amplicon 

sequencing. If several genomic loci are enriched the application called as panel (a.k.a., 

targeted) sequencing. Targeted sequencing focuses on a specific subset of genes or genomic 

regions. This is often used in diagnostics where only a panel of disease related genes is 

selected [Bybee et al., 2011; Konnick et al., 2017]. Nowadays, some library preparation KITs 

of gene panels contain unique molecular identifiers (UMI) which help to determine the variant 

allele frequencies (VAF) more precisely [Crysup et al., 2022; Smith et al., 2017; Zhou and 

Swanstrom, 2020]. This means additional steps in the corresponding bioinformatic workflow 

as well. In the whole-exome sequencing (WES) application only coding parts of genome are 

enriched by hybridization probes [Rabbani et al., 2014]. This allows to focus on mutations 

presented only in coding parts of genes which often carry the disease-causing mutation. In 
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other cases, we are interested in gDNA modifications such as methylated cytosines. Bisulfite-

seq (BS-Seq) or WGBS is a well-established protocol to provide single-base resolution of these 

changes [Kunde-Ramamoorthy et al., 2014; Yang and Mackenzie 2020]. 

RNA-Seq is another widely used application of NGS used mainly for a study of a 

gene/miRNA expression or build reference transcriptome. It can be targeted on several types 

of molecules like mRNA, short RNAs (miRNA, piRNA), long non-coding RNA, etc. [Wang et al., 

2009]. In differential gene expression projects at least two or more groups of samples (min 3-

5 biological replicates/group) are sequenced. The expression profiles of the groups are 

compared using statistical approaches. The results should reveal the differences based on the 

gene expression and potentially identify genes and pathways that are responsible for a given 

phenotype. RNA-Seq. To carry out basic RNA-Seq application transcriptome information and 

gene annotation, a list of genes, their composition (e.g., introns, exons and untranslated 

regions) and position in a reference genome should already know. The non-model organism’s 

transcriptome could be assembled de novo which works on slightly different principles than 

de novo genome assembly as it must be able to assemble more isoforms of a single gene 

[Martin and Wang, 2011]. For these types of projects, third-generation sequencing methods 

are more suitable in a combination of NGS as well [Leonardi and Leger, 2021; Whang et al., 

2021; Zhang et al., 2019]. 

As the widespread use of these tools makes possible to apply them in different clinical 

research studies. In the following sections example cases will be introduced. 
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Somatic mutation profiling 

CASE STUDY I.: CLL 

Chronic lymphocytic leukemia (CLL) is a type of cancer in blood and bone marrow. The 

term "chronic" comes from that this leukemia typically progresses more slowly than other 

ones. The name "lymphocytic" comes from the fact, that white blood cells, called lymphocytes 

are affected by the disease. CLL is characterized by substantial clinical and genetic 

heterogeneity. The latest WES/WGS studies undisclosed recurrently mutated driver genes, 

including ATM, NOTCH1, SF3B1, BIRC3, NKFBIE, MYD88 and TP53, and identified clonal 

evolution as the major mechanism driving disease progression [Baliakas et al., 2015; Landau 

et al., 2013, 2015; Puente et al., 2011; Quesada et al., 2011; Schuh et al., 2012; Wang et al., 

2011]. Patients with TP53 aberrations have been characterized typically by refractoriness to 

standard therapies and particularly poor outcome with rapid selection of the resistant clones 

[Malcikova et al., 2015; Rossi et al., 2009]. The B-cell proliferation- and the irreversible 

Bruton’s tyrosine kinase (BTK) inhibitor, called ibrutinib has been changing the treatment 

standards of CLL with remarkable outcomes in first line and in relapse [Ahn et al., 2018; Burger 

et al., 2015; Byrd et al., 2014; Farooqui et. al., 2015]. Regardless of the durable responses were 

observed in most patients (approx. 20%) develop resistance, with mutations in BTK and PLCG2 

representing the predominant mechanisms conferring secondary ibrutinib resistance [Furman 

et al., 2014; Woyach et al., 2014]. The loss of function in BTK Cys481 mutations are leading to 

impaired ibrutinib binding and/or the gain of function PLCG2 (e.g., 

Arg665Trp/Ser707Tyr/Leu845Phe) mutations are resulting in continuous B-cell receptor (BCR) 

signalling [Ahn et al., 2017; Maddocks et al., 2015; Woyach et al., 2017]. 

According to numerous studies, the above-mentioned mutations are commonly present 

in multiple independent subclones are proposing parallel clonal evolution and their 

emergence predates clinical progression and relapse [Ahn et al., 2017; 2015; Woyach et al., 

2017]. Clonal shifts were identified by WES during the early periods of ibrutinib treatment in 

one third of the patients were associated with disease progression [Landau et al., 2017]. The 

comprehensive characterisation of the mechanisms underlying ibrutinib resistance and the 

related changes in the subclonal architecture have dominant clinical impact [Jain et al., 2015]. 
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To dissect the clonal evolution affecting all relevant mutations in CLL, a temporal 

mutation profiling was performed by targeted analysis of 30 genes in paired pre- and post-

treatment cohort of patients with ibrutinib therapy. 

CASE STUDY II.: PCNSL 

A primary central nervous system lymphoma (PCNSL) is a type of cancer originating from 

immune cells known as lymphocytes that develops in central nervous system (e.g., brain 

and/or spinal cord; CNS). It has rare malignancy with an exceptionally aggressive clinical 

course and a poor outcome. Histologically, it is manifested as diffuse large B-cell lymphoma 

(DLBCL), which is bound to the CNS structures [Hochberg et al., 1988; O'Neill et al., 1989; Kluin 

et al., 2017]. DLBCLs could be sub-classified into molecular subgroups including germinal 

center B-cell (GC) type or activated B-cell (ABC) type, with a small number of “unclassified” 

(UC) cases [Alizadeh et al., 2000]. These sub-classification methods have important prognostic 

and potential therapeutic implications [Alizadeh et al., 2000; Wright et al., 2003]. The GC/ABC 

classification of DLBCLs is based on gene expression patterns (GEP) of fresh or fresh-frozen 

tissues and Affymetrix became a “gold-standard” method. It was followed by the development 

of numerous formalin-fixed paraffin-embedded (FFPE) tissue-based immunohistochemistry 

(IHC) predictors, including the Hans algorithm [Choi et al., 2009; Hans et al., 2004; Meyer et 

al., 2011]. These methods showed poor efficacy in precise assignment of patients into 

subgroups. The Lymphoma Subtyping Test (LST) assay developed by NanoString Technologies, 

is an FFPE compatible, gene expression-based test for molecular subtyping of B-cell 

lymphomas. The assay is based on the expression of 15 target- and 5 housekeeping genes and 

begun a more accurate technique compared with standard IHC algorithms. 

The molecular subtype of PCNSL has been studied by different methods resulted in 

conflicting conclusions. For instance, according to various IHC studies, an ABC-like 

immunophenotype is typical [Camilleri-Broet et al., 2006; Liu et al., 2017; Raoux et al., 2010], 

but immunoglobulin heavy chain gene (IGHV) mutational signatures also provide evidence for 

germinal center exposure [Larocca et al., 1998; Montesinos-Rongen et al., 1999; Thompsett 

et al., 1999]. In contrast, gene expression profiling studies indicate that PCNSLs are distributed 

among the spectrum of systemic DLBCL with roughly equal proportion of ABC and GC cases 

[Montesinos-Rongen et al., 2008; Rubenstein et al., 2006]. 
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Recent studies profiling the genomic background of PCNSL have identified multiple 

mutated genes, which harbouring putative driver aberrations and others serving as aberrant 

somatic hypermutation (ASHM) targets [Braggio et al., 2015; Bruno et al., 2014; Chapuy et al., 

2016; Fukumura et al., 2016; Nakamura et al., 2016; Vater et al., 2015; Zhou et al., 2018]. The 

most frequently mutated genes, overlap with the mutational targets identified in systemic 

DLBCL, are listed in Table 1. 

Pathway Genes 

B-cell receptor signalling MYD88, CD79B, CARD11 

Cell cycle/apoptosis regulation TP53, CCND3, BTG2, PIM1, CDKN2A, ATM 

Chromatin regulation KMT2D 

Transcriptional regulation C-MYC, PRDM1, TBL1XR1 

Table 1. List of example genes. 

Compared to nodal DLBCLs, the mutation landscape of PCNSLs of ABC and GC origin do 

not show considerable differences [Fukumura et al., 2016; Kraan et al., 2013; Yamada et al., 

2015; Zhou et al., 2018] and treatment of the disease remains a significant clinical challenge. 

To overcome these difficulties NanoString LST-assay was used to precisely determine 

molecular subgroups of a large cohort of PCNSL and complementary targeted mutation 

profiling was applied to identify key genetic alterations on a subset of the patients. 
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DNA methylation profiling 

CASE STUDY III.: GBM 

Glioblastoma multiforme (GBM), also referred to as a grade IV astrocytoma, is one of 

the most aggressive and fast-growing brain tumors. It invades the nearby brain tissue, but 

generally does not spread to distant organs. Its exhibiting great variability at histopathological 

and molecular levels. The disease development is related to the accumulation of various types 

of mutations (e.g., somatic genomic rearrangements, SNVs, CNVs), accompanied by changes 

in epigenomic and gene expression profiles as well. Several studies showed genomic and 

transcriptomic characteristics of GBM [Brennan et al., 2013; Cancer Genome Atlas Research 

Network, 2008; Kim et al., 2015a, b; Patel et al., 2014; Sottoriva et al., 2013; Verhaak et al., 

2010; Wang et al., 2016, 2017]. 

Nowadays, the background of GBM development is well described and the disease is 

divided into subgroups based on transcriptional and epigenomic profiles [Brennan et al., 2013; 

Cancer Genome Atlas Research Network, 2008; Noushmehr et al., 2010; Verhaak et al., 2010]. 

However, most studies involved cross-sectional cohorts, since the collection of sequential 

samples is difficult because of the aggressive progression of GBM. Investigate the methylome 

is an alternative to mRNA expression profiling in FFPE GBM specimens. The first 

comprehensive epigenomic analysis was reported by Noushmehr et al., 2010, followed by 

several ones [de Souza et al., 2018; Hu et al. 2016; Klughammer et al., 2018; Nagarajan et al., 

2014;]. The early epigenomic studies determined levels of CpG methylation applying various 

methods but the evaluation of the results encountered difficulties [Hegi et al., 2005; 

Noushmehr et al., 2010]. These types of surveys became more feasible thanks to the recent 

availability of the reduced representation bisulfite sequencing (RRBS) method. Klughammer 

et al., (2018) reported single-CpG and single allele methylation profiles in the context of 

multidimensional clinical and molecular data applying RRBS. The involvement of the Wnt 

pathways in both cross-sectional and sequential FFPE GBM was previously reported [Tompa 

et al., 2018]. To further explore mechanisms of GBM, distribution of differentially methylated 

DNA CpG regions and pathways in 22 pairs of sequential FFPE GBM specimens were analysed. 
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miRNome profiling 

CASE STUDY IV.: NSCLC 

Lung cancer is one of the most common causes of cancer-related deaths worldwide. 

Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers and represents a 

heterogenous group of malignancies comprised mainly of adenocarcinomas (ACs) and 

squamous cell carcinomas (SCCs) [Herbst et al., 2018; PDQ Adult Treatment Editorial Board, 

2022; Siegel et al., 2019]. Recently, a numerous novel targeted therapy has been established 

as treatment options [Donington et al., 2011; Ettinger et al., 2017, 2022; Hirsch et al., 2017]. 

However, despite significant therapeutic progress, novel targeted anti-cancer drugs used in 

different NSCLC subtypes presented with differential levels of efficacy [Ferrara et al., 2021; 

Pasquali et al., 2018 Rekulapelli et al., 2022; Zhu et al., 2017]. Targeted therapies directed 

against specific cellular alterations were found most successful in patients with non-squamous 

tumors. Diagnosis of lung cancer based on histopathological analysis remains the gold 

standard, this method has several important limitations [IJC]. Recent advances in personalized 

targeted lung cancer therapies require not only accurate histological classification of NSCLC 

but need to be extended by a precise characterization of its molecular background [Gou et al., 

2018; Schipper et al., 2022; Pilotto et al., 2015; Zhang et al., 2022]. 

miRNAs (microRNAs) constitute a group of endogenous short non-protein coding RNAs 

that regulate gene expression by degrading mRNA or by incomplete binding to a 

complementary sequence of a target mRNA. Recent studies demonstrated that aberrations in 

the profile of miRNAs expression can play a crucial role in carcinogenesis and progression of 

many human tumor types, including lung cancer [Chaturvedi and Som 2022; Rajakumar et al., 

2022; Yan et al., 2022]. On the other hand, microRNAs have emerged as promising biomarkers 

that can contribute to more effective early detection of asymptomatic lung cancer and better 

prognostication of both disease course and efficacy of molecularly targeted therapies [Hua et 

al., 2022; Liang et al., 2022]. The fact miRNAs exhibit high tissue specificity, that is most likely 

associated with their significant role in the regulation of cell differentiation [Ghafouri-Fard et 

al., 2020; Goradel et al., 2019; Wang et al., 2020], become a base for numerous studies 

searching the use of miRNAs as putative molecular markers. Reports indicated that the 

analysis of global miRNome in early-stage NSCLC patients could become more useful tool 
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allowing for development of more accurate histotypic-associated markers to distinguish lung 

SCC from AC subtypes. 

To precisely characterize the histopathological and molecular features of NSCLC, for 

more accurate identification of those patients that could benefit from novel molecular-

targeted therapies, advanced omics technologies were applied for global miRNA expression 

profiling and biomarker research in a large and well-characterized group of patients with 

completely resected fresh-frozen early-stage lung tumours and blood samples. 

Assisted reproduction 

CASE STUDY V.: NIPGT-A 

Embry selection clinical guidelines used today in in vitro fertilization (IVF) treatments are 

relied on non-invasive embryo morphology assessment. The grading criteria for standardized 

applicable oocyte and embryo assessment was latest updated in 2011 [Alpha Scientists in 

Reproductive Medicine and ESHRE Special Interest Group of Embryology, 2011]. In accordance 

with the development of morphological assessment [Gardner et al., 2015; Paternot et al., 

2013] the number of non-invasive methods, based on the detection of molecular markers 

present in the spent culture media (SCM) of the embryo, are increasing. 

There are several methods to assess embryo quality, ploidy and viability or monitor the 

catabolic activity in a less harmful procedure [Butler et al., 2013; Devreker et al., 2000; 

Gardner et al., 2001; Katz-Jaffe el al., 2006; Mains et al., 2011; Montskó et al., 20144-10]. 

Continuous development of these analytical techniques like ESI-MS fingerprinting, Nano-

UHPLC MS/MS, MALDI-TOF, immunoassays, microarray and NGS approaches offer exceptional 

non-invasive way to profile the embryo from the SCM [Cortezzi et al., 2013; Hernandez-Vargas 

et al., 2020]. The use of minimal- or non-invasive methods have a major impact on the genetic 

composition assessment of the developing embryo. Pre-implantation genetic testing for 

aneuploidy (PGT-A) is integrated into many IVF programmes to achieve improvements in 

success outcome [Wells et al., 2010] emerging perspectives the need of non-invasive pre-

implantation genetic testing for aneuploidy (NIPGT-A) [Huang et al., 2019, Shitara et al., 2021]. 

The growing scientific evidence emphasises the clinical applicability of SCM in NIPGT-A and 

the concordance of NIPGT-A with inner cell mass (ICM) or blastoderm biopsies [Handyside et 

al., 2016; Huang et al., 2019; Kuznyetsov et al., 2018; Rubio et al., 2020; Shitara et al., 2021; 
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Vera-Rodriguez et al., 2018]. NIPGT-A may have the potential to superior to TE biopsy for 

aneuploidy screening [Huang et al., 2019], but the major pitfall is that there are many well-

defined sources of DNA contamination (e.g., polar bodies, cumulus cells, external fragmented 

DNA). These contamination mechanisms have been observed by independent studies [Huang 

et al., 2019; Rubio et al., 2020; Shitara et al., 2021; Vera-Rodriguez et al., 2018] and described 

as the key limitations of the method. 

To address the above-named crucial limitations, the aim of the current case study was 

to develop a workflow based on NGS and the corresponding bioinformatic pipeline. During 

the workflow implementation, particular emphasis was placed to minimising the noise effect 

of the DNA contamination. The proposed methodology was tested on SMC droplets of 

morphologically good quality embryos to avoid false positive results from disproportionate 

embryonic cell divisions. 
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Material and Methods 

Pipeline building 

For each pipeline, that was implemented within this thesis, the following strategy 

(Figure 1.) was applied to build standard and reproducible workflows that can be run in various 

environments (e.g., local, cloud or HPC). In the view of the known biological problem best 

tools were selected based on a literature search. Based on the chosen tool’s manual potential 

useful parameters were selected in advance (before compiling it). Since, the installation of a 

software is not always straightforward and time-consuming Docker/Singularity containers 

[Merkel, 2014; Kurtzer et al., 2017] or conda [https://docs.anaconda.com/] predefined 

environments were preferred during the pipeline assembly. First, tools were tested separately 

using example dataset, if it was available to the tool, otherwise a small dataset was prepared 

manually. This test phase was important to define a general parameter set, input files and file 

types and debug the proper commands which will be run during the analysis. 

 
Figure 1. Sematic workflow of the pipeline building strategy. 

In the next phase the actual workflow was designed using Nextflow workflow 

management system [Di Tommaso et al., 2017]. Nextflow uses Docker or Singularity 

technology for the multi-scale handling of containerized computation. It is designed to 
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address numerical instability, efficient parallel execution, error tolerance, execution 

provenance and traceability. It is a domain-specific language that enables rapid pipeline 

development through the adaptation of existing pipelines written in any scripting language. 

Nextflow enables users to run any current or previous version of a pipeline for any published 

and properly deposited analyses. The GitHub integration allows consistent tracking of 

software changes and versions, the containerization ensures numerical stability, and the cloud 

support provides rapid computation and effective scaling. Nextflow uses a functional reactive 

programming model in which each operation (typically a workflow task) is isolated in its own 

execution context. Outputs from one operation in during the run are streamed to other 

operations by dedicated channels in a process like UNIX pipes. Parallelization is an implicit 

consequence of the way inputs and outputs of each process are channelled into other 

processes. This approach spares users the need to implement an explicit parallelization 

strategy. After the first version of the pipeline, it was tested on an HPC platform using example 

and real data as well to fix bugs, finalize the parameters, inputs/outputs and utilized 

computational recourses for each process in the workflow. These instructions were stored in 

a separate config file that Nextflow can take as an input. An example of a nextflow script and 

the corresponding config file are presented on Figure 2. 

A small readme file or manual was prepared about how to run the pipeline mentioning 

the crucial input parameters. Finally, if it was necessary the implemented pipeline and all the 

relevant files were uploaded to a git [Chacon and Straub, 2014] repository. For each case study 

the unique elements of the developed pipeline are described in the “Bioinformatics workflow” 

section. 
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(a) 
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(b) 

 
Figure 2. Partial example of a Nextflow script (a) including the first 2 steps, log section, general input parameters 
and (b) the corresponding config file. 
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Somatic mutation profiling 

CASE STUDY I.: CLL 

Patient samples 

Table 2. summarize clinical characteristics of the samples that were added in this study. 

The cohort (20 consecutive patients, 12 males and 8 females) represented a pre-treated 

patient group with a median age of 63 and 2 (range: 1-5) lines of prior therapies. These 

patients were treated with ibrutinib via a case-by-case individual application process available 

in Hungary since July 2014, with full support by the National Health Insurance Fund from 2017. 
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Table 2. Cohort characteristics. Allo-SCT: allogeneic stem cell transplantation; Chl: chlorambucil; Cyc: Cyclophosphamide F: female; FC: fludarabine, cyclophosphamide, FCM: 
fludarabine, cyclophosphamide, mitoxantrone; FISH: fluorescence in situ hybridization; HDMP: high dose methylprednisolone; M: Male; M: mutated; R: rituximab; RB: 
24ituximab, bendamustin; R-Chl: rituximab, chlorambucile; R-CHOP: rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone; R-CNOP: rituximab, 
cyclophosphamide, mitoxantrone, vincristine, prednisone; R-CVP: rituximab, cyclophosphamide, vincristine, prednisolone; RFC: rituximab, fludarabine, cyclophosphamide; 
RM: ribomustin; U: unmutated [Gángó et al., 2019]. 
 

Patient ID
Age 

(years) Gender Prior therapy
Pre-ibrutinib 

FISH 
cytogenetics

IGHV (M, U)
CD38 

expression
Binet 
stage

Number of 
prior 

therapies

TTFT 
(months)

Time from 
diagnosis to 

ibrutinib (months)

Duration of 
ibrutinib till NGS 
analysis (months)

Additional follow-
up after the NGS 
analysis (months)

1 60 F FC, ofatumumab, RFC, R-CHOP, RB 12+/IgHdel U positive B 5 48 126 34 6
2 65 M RFC, R-CVP, RB, 17p-/13q- U positive C 3 60 115 24 2
3 64 M FC, alemtuzumab, allo-SCT 11q-/13q- U positive B 2 13 117 18 28
4 58 F RFC, RB 11q-/6q-/13q- M positive B 2 3 39 12 28
5 63 M FC, R-CVP, RFC, RB normal U positive C 4 6 103 32 12
6 85 M FC, RB, R-CVP, HDMP+R+RM 13q- M positive B 4 51 119 29 0
7 48 M RFC 11q-/13q- U positive C 1 36 58 27 13
8 50 F RFC, RB 13q-/17p- U positive C 2 72 149 8 28
9 63 F RFC, R-CHOP, R-CNOP 12+ U positive C 3 10 67 3 0

10 51 M RFC, R-CVP, RB 13q- U positive C 3 1 41 21 0
11 65 F CVP, R-CVP, RB 12+ U positive C 3 6 96 24 13
12 63 M RFC, R-CVP, RB 13q- U positive B 3 50 99 26 12
13 69 F Chl, Cyc, RB 17p-/12+ U positive B 2 15 86 8 27
14 66 F RFC, R-Chl normal U positive C 2 20 53 28 13
15 63 M FCM, RB 12+ U positive B 2 36 137 24 15
16 51 M FC, RB 13q- U negative C 2 0,5 82 30 13
17 73 F RFC, RB, R-Chl, R-CVP, R-CHOP 17p-/12+ M positive C 5 19 75 18 0
18 65 M RFC, RB 17p- U positive C 2 0 19 3 29
19 64 M RFC,HDMP 17p- U negative B 2 34 36 8 0
20 56 M RFC 17p-/13q- U negative C 1 83 132 17 15
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Pre-treatment peripheral blood mononuclear cells (PBMC) were available from all 

patients, with corresponding post-treatment samples as shown in Figure 3. The IGHV 

mutation conditions were determined according to the European Research Initiative on CLL 

recommendations [Rosenquist et al., 2017] (e.g., 13q, 11q and 17p deletions and trisomy 

12) and analysed by interphase fluorescence in situ hybridization applying Vysis probe sets 

(Abbott Molecular, Lake Bluff, USA). The CLL cells rate in the samples was assessed by flow-

cytometry using CD5/CD19/CD23/CD45 staining. Healthy volunteer set (n = 5) was used as 

negative controls. Written informed consent from all patients was obtained for the study 

which was conducted in accordance with the Declaration of Helsinki and approved by the 

Hungarian Medical Research Council. 

Figure 3. Timeline and basic cytogenetic features of the cohort (n = 20, P1-20) treated with ibrutinib. Red 
circles denote patients who progressed on ibrutinib with a BTK or PLCG2 mutation as determined by NGS. 
Coloured squares indicating the IGHV status [Gángó et al., 2019]. 

Customized amplicon sequencing 

Targeted NGS analysis of recurrently mutated genes listen in Table 3 with a published 

frequency of ≥2% [Baliakas et al., 2015; Puente et al., 2011; Quesada et al., 2011; Schuh et 

al., 2012; Wang et al., 2011] was performed by the TruSeq Custom Amplicon approach 

(Illumina, Inc., San Diego, USA) with maximum input of gDNA samples extracted from 

PBMCs. After quality control (QC) and equimolar pooling of samples, libraries were 
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sequenced on a HiSeq 4000 Instrument using 150bp paired-end chemistry (PE150). The 

variant allele frequencies (VAF) were normalized according to the proportion of CLL cells. 

During the sequencing, the median follow-up time was 22.5 months (range: 3-34 months). 

Gene Analysed region Transcript ID 

ATM whole CDS ENST00000278616  

BCOR Exons 4, 8-10, 12, 13 ENST00000378444  

BIRC3 Exons 2, 6-9 ENST00000615299  

BRAF Exons 11-15 ENST00000288602  

BTK whole CDS ENST00000308731  

CHD2 Exons 2-3, 8, 10, 13, 16, 17, 20-21, 25-27, 29-32, 35, 36 ENST00000394196  

DDX3X Exons 2, 3, 6, 7, 9-13 ENST00000399959  

EGR2 Exons 1, 2 ENST00000242480  

EIF2A Exon 10 ENST00000460851  

EP300 Exons 20, 28 ENST00000263253  

FBXW7 Exons 5, 7, 9, 10, 11 ENST00000281708  

HIST1H1E Exon 1 ENST00000304218  

IGLL5 whole CDS ENST00000532223  

KLHL6 Exons 1, 2 ENST00000341319  

KMT2D Exon 39 ENST00000301067  

LRP1B Exons 7, 13, 32, 41 ENST00000389484  

MED12 Exons 1, 2, 21 ENST00000374080  

MGA Exons 2, 3, 8, 11, 13, 15 ENST00000219905 
MYD88 whole CDS ENST00000396334  

NFKBIE Exons 1, 2 ENST00000275015  

NOTCH1 Exons 2, 4, 6, 7, 10, 13, 15, 17, 21, 22, 26, 31, 34 ENST00000277541  

PLCG2 whole CDS ENST00000564138  

POT1 Exons 5-10, 18 ENST00000357628  

RIPK1 Exons 8, 10 ENST00000380409  

RPS15 whole CDS ENST00000592588  

SAMHD1 Exons 2-4, 6-13 ENST00000262878  

SF3B1 Exons 14-18 ENST00000335508  

TP53 whole CDS ENST00000269305  

XPO1 Exons 2, 16, 20 ENST00000401558  

ZMYM3 Exons 6, 15, 16, 20, 23, 24 ENST00000314425  

Table 3. Targeted genes and regions including Ensembl transcript IDs [Gángó et al., 2019]. 
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Bioinformatics workflow 

Applied bioinformatic pipeline is presented on Figure 4. As data preprocessing, filtered 

sequencing reads were mapped to the Ensembl Homo sapiens hg19/GRCh37 genome build 

using BWA v0.7.13 aligner [Li et al., 2010]. BAM files were sorted and indexed by SAMtools 

v1.7 [Danecek et al., 2021], GATK v4.0 BSQR tool [DePristo et al., 2011] was run on each 

sample to detect and correct systematic sequencing errors. SNV calling was performed with 

LoFreq v2.1 variant-caller [Wilm et al., 2012] that considers all dataset features (e.g., base-

call qualities, mapping problems or base/INDEL misalignments) that are commonly ignored 

by other methods or only used just for filtering. Built in p-value calculation for each detected 

mutation granted a strict control of false positive findings. Raw variants were functionally, 

and database annotated using SnpEff v4.3i [Cingolani et al., 2012] and ANNOVAR v2017Jul17 

tools [Wang et al., 2021], including up-to-date information from COSMIC, avSNP and 

CLINVAR databases. Variants in the TP53 coding region were additionally annotated using 

the ANNOVAR preformatted Seshat and IARC databases [Bouaoun et al., 2016; Tikkanen et 

al., 2018]. The raw sequencing data was uploaded to the European Nucleotide Archive 

(https://www.ebi.ac.uk/ena, Primary Accession: PRJEB32120, Secondary Accession: 

ERP114759). 

 

Figure 4. Used bioinformatic workflow (from raw data to annotated VCF file) including main steps and 
checkpoints. 
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Validation of somatic variants 

Bidirectional Sanger sequencing was performed to validate all somatic variants with a 

VAF of >20% listed in Table 4. 

Patient number 
– month on 

ibrutinib 
Gene cDNA position Amino acid VAF (%) 

P1 – M0 CHD2 c.3349A>G p.Arg1117Gly 29.02 
P1 – M0 KMT2D c.12144_12145insGGGGCCG p.Leu4049fs 26.98 
P2 – M0 TP53 c.376-2dupA  42.86 
P2 – M0 TP53 c.742C>T p.Arg248Trp 21.19 

P2 – M24 TP53 c.841G>A p.Asp281Asn 52.89 
P3 – M0 ATM c.8187A>T p.Gln2729His 66.26 
P3 – M0 DDX3X c.669_670dupTG p.Ala224fs 47.89 

P3 – M18 ATM c.6067G>A p.Gly2023Arg 22.16 
P3 – M18 ATM c.8187A>T p.Gln2729His 70.96 
P4 – M0 POT1 c.284G>A p.Gly95Asp 43.01 

P4 – M12 POT1 c.284G>A p.Gly95Asp 20.34 
P7 – M0 EGR2 c.1066G>A p.Glu356Lys 41.86 
P7 – M0 POT1 c.185T>C p.Phe62Ser 44.50 
P9 – M3 MED12 c.97G>A p.Glu33Lys 41.68 

P10 – M0 ATM c.7177T>G p.Phe2393Val 34.24 
P10 – M0 NOTCH1 c.7225C>T p.Gln2409* 32.92 

P10 – M21 ATM c.7177T>G p.Phe2393Val 27.62 
P10 – M21 BTK c.1442G>C p.Cys481Ser 21.59 
P10 – M21 NOTCH1 c.7225C>T p.Gln2409* 25.62 
P13 – M0 EGR2 c.1150C>A p.His384Asn 20.71 
P13 – M8 SF3B1 c.2098A>G p.Lys700Glu 37.84 
P14 – M0 NOTCH1 c.7541_7542delCT p.Pro2514fs 41.66 
P14 – M0 SAMHD1 c.1015C>T p.Arg339Cys 84.88 

P14 – M28 NOTCH1 c.7541_7542delCT p.Pro2514fs 33.55 
P14 – M28 SAMHD1 c.1015C>T p.Arg339Cys 75.29 
P15 – M0 BRAF c.1801A>G p.Lys601Glu 21.23 
P18 – M0 TP53 c.803A>T p.Asn268Ile 81.12 
P18 – M3 TP53 c.803A>T p.Asn268Ile 87.83 
P20 – M0 NOTCH1 c.7516G>T p.Glu2506* 45.48 
P20 – M0 TP53 c.314G>T p.Gly105Val 24.73 

P20 – M17 NOTCH1 c.7516G>T p.Glu2506* 30.75 

Table 4. Mutation validated by Sanger sequencing [Gángó et al., 2019]. 
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The BTK Cys481Ser and PLCG2 Asp993His mutations were validated by droplet digital 

PCR (ddPCR). PCR Reactions were performed with 50 ng input DNA using locus-specific 

assays for the wild type and mutant targets (Table 5) following the manufacturer’s protocol. 

Droplets were created by the QX200 Automated Droplet Generator and reading was 

completed with the QX200 ddPCR system (Bio-Rad, Hercules, CA, USA). Results were 

analysed using the Bio-Rad QuantaSoft software. The BTK/PLCG2 mutation allelic burden 

was determined using the following equation FA = a/(a+b) (FA; fractional abundance, a; No. 

of mutant molecules, b; No. wild type molecules). 

Target gene/mutation Assay Name Assay ID 

PLCG2 Asp993His PLCG2_G>C,D/H dHsaMDS815970714 

BTK Cys481Ser BTK_G>C,C/S dsHsaMDS802598840 

Sequence 
CGACCTCCTGAAGTACAATCAAAAGGGCCTGACCCGCGTCTACCCAAAGGGACAAAGAGTT[G/C]ACTCT
TCAAACTACGACCCCTTCCGCCTCTGGCTGTGCGGTTCTCAGATGGTGGCACTCAA 
ACATCTCTAGCAGCTGCTGAGTCTGGAAGCGGTGGCGCATCTCCCTCAGGTAGTTCAGGAG[G/C]CAGCC
ATTGGCCATGTACTCAGTGATGATGAAGATGGGGCGCTGCTTGGTGCAGACGCCAT 

Table 5. Sequence of the digital droplet PCR assays [Gángó et al., 2019]. 
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CASE STUDY II.: PCNSL 

Patient samples 

FFPE tissue samples from patients, included in the study, were obtained from the 

following centres: 

(1) First Department of Pathology and Experimental Cancer Research, Semmelweis 

University, Budapest, Hungary 

(2) Department of Pathology, University of Pécs, Pécs, Hungary 

(3) Division of Neuropathology, The National Hospital for Neurology and 

Neurosurgery, University College London Hospitals, United Kingdom, through the 

UK Brain Archive Information Network (BRAIN UK) 

Permissions to use the archived tissue have been obtained from the Local Ethical Committee 

(TUKEB-1552012) and from BRAIN UK (Ref.: 16/018), and the study was conducted in 

accordance with the Declaration of Helsinki. 

Clinical data of the cohort (PCNSL n = 81, SCNSL n = 18) on the molecular subtype as 

determined by IHC during the routine diagnostic workup are summarized Table 6. Survival 

data were available for 65 PCNSL and 17 SCNSL cases, while treatment data available in 46 

PCNSL and 12 SCNSL cases, respectively. 
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Case 
No Sex 

Age at 
diagnosis 

(years) 

OS 
(months) Event 

Molecular 
subtype 

IHC 
Therapy 

 
P1 M 75 4.6 exit ABC NA  

P2 F 64 3.9 exit ABC MTX/Ara-C  

P3 F 60 9.0 alive GC MATRix  

P4 F 73 2.7 exit ABC Steroid  

P5 F 77 7.5 exit ABC MTX  

P6 M 53 19.0 exit NA 
MTX/Ara-C, RT, CEPP, VIM, 

Tem 
 

P7 F 66 7.8 exit ABC MTX  

P8 F 59 2.1 exit ABC MTX, WBRT  

P9 F 72 NA NA ABC NA  

P10 F 80 NA NA ABC NA  

P11 F 51 NA NA ABC NA  

P12 M 67 56.0 alive ABC MTX/Ara-C/R, WBRT  

P13 F 77 3.0 exit ABC NA  

P14 M 64 4.1 exit ABC MTX/Ara-C/R, Steroid  

P15 M 73 16.5 exit ABC MTX/R, Steroid  

P16 M 59 11.0 exit ABC NA  

P17 M 56 3.5 alive ABC NA  

P18 F 55 17.2 exit ABC MTX/Ara-C, Steroid  

P19 F 92 1.8 exit ABC NA  

P20 M 77 5.3 exit ABC MTX  

P21 F 54 NA NA ABC MTX/Ara-C  

P22 M 67 39.5 alive ABC MTX, CEPP  

P23 F 78 NA NA ABC MTX  

P24 M 72 5.7 exit ABC NA  

P25 F 47 NA NA ABC NA  

P26 F 43 11.5 exit GC NA  

P27 F 78 23.0 alive ABC MTX/Ara-C  

P28 F 78 22.7 alive ABC MTX, RT  

P29 F 62 7.9 alive ABC MTX/Ara-C/R  

P30 F 70 15.5 alive ABC MTX, RT  

P31 F 59 NA NA ABC NA  

P32 F 70 13.7 alive ABC MTX  

P33 F 43 12.0 exit ABC MTX/Ara-C  

P34 M 46 68.0 exit ABC MTX/Ara-C/R, RT, Steroid  

P35 F 68 6.9 alive ABC MTX/Ara-C  

P36 M 72 NA NA ABC NA  

P37 M 71 0.5 exit ABC MTX  

P38 M 76 0.9 exit ABC palliative  
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Case 
No Sex 

Age at 
diagnosis 

(years) 

OS 
(months) Event 

Molecular 
subtype 

IHC 
Therapy 

        

P39 M 70 34.6 exit ABC NA  

P40 F 51 52.1 alive ABC MTX/Ara-C  

P41 M 59 88.2 alive ABC NA  

P42 M 70 NA NA ABC NA  

P43 F 59 14.0 exit ABC 
IDARAM, MTX/Ara-C/R, 

WBRT 
 

P44 F 70 0.5 exit ABC NA  

P45 F 51 27.0 alive ABC MTX/Ara-C  

P46 M 66 2.2 exit ABC MTX, CEPP  

P47 F 81 0.01 exit ABC NA  

P48 F 65 2.1 exit ABC MTX  

P49 M 35 NA NA ABC NA  

P50 M 68 8.9 exit NA NA  

P51 M 73 27.3 alive GC MTX/Ara-C, R-IE  

P52 M 61 NA NA ABC NA  

P53 F 77 NA NA ABC NA  

P54 M 58 NA NA ABC NA  

P55 M 76 1.0 exit ABC NA  

P56 F 63 30.8 exit ABC MTX  

P57 M 63 54.9 exit ABC MTX/Ara-C, RT, Steroid  

P58 F 64 0.5 exit ABC NA  

P59 M 66 13.9 exit ABC MTX  

P60 F 82 3.5 exit ABC NA  

P61 F 64 2.1 exit ABC NA  

P62 M 71 6.3 exit ABC NA  

P63 M 56 NA NA ABC NA  

P64 F 66 NA NA ABC NA  

P65 F 85 0.9 exit ABC NA  

P66 M 75 0.5 exit ABC MTX  

P67 F 68 86.4 alive ABC MTX  

P68 M 70 0.5 exit ABC MTX  

P69 F 70 34.1 exit ABC MTX, CEPP, RT  

P70 F 57 48.2 exit ABC MTX  

P71 F 75 59.1 alive ABC MTX  

P72 M 69 39.4 alive ABC MTX  

P73 M 50 13.8 exit ABC MTX, CEPP, RT  

P74 F 68 43.1 exit ABC 
MTX/Vumon/BCNU, RT, Ara-

C 
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Case 
No Sex 

Age at 
diagnosis 

(years) 

OS 
(months) Event 

Molecular 
subtype 

IHC 
Therapy 

        

P75 F 67 NA NA ABC NA  

P76 F 20 116.4 alive GC MTX, WBRT  

P77 M 70 0.5 exit ABC NA  

P78 F 63 14.3 exit ABC MTX, CEPP, RT  

P79 M 68 0.1 exit ABC NA  

P80 M 75 13.8 exit ABC NA  

P81 M 65 2.3 exit ABC MTX  

S1 F 78 NA NA NA MTX  

S2 M 72 0.6 exit GC R-CHOP, R, WBRT  

S3 M 63 127.3 exit ABC MTX/Vumon/BCNU  

S4 M 61 33.0 alive GC R-IDARAM, R  

S5 F 65 84.6 exit GC NA  

S6 F 25 5.0 exit GC 
R-CODOX-M, R-IVAC, 

WBRT 
 

S7 F 67 61.6 alive GC R-CHOP  

S8 M 56 0.5 exit GC NA  

S9 F 55 82.6 alive ABC R-CHOP  

S10 M 21 13.9 alive GC MATRIX  

S11 F 37 84.5 alive GC NA  

S12 F 69 7.2 exit GC R-GCVP  

S13 F 75 3.7 exit ABC MTX, Steroid  

S14 F 55 0.5 exit ABC R-CHOP  

S15 F 59 24.8 exit ABC NA  

S16 M 45 3.8 exit ABC R-CHOP, MTX/Ara-C  

S17 F 71 3.9 exit ABC NA  

S18 M 19 86.4 alive ABC NA  

Table 6. Descriptive statistics of the PCNSL/SCNSL cohort. P[1-81] PCNSL cases; S[1-19]: SCNSL cases; ABC: 
activated B-cell; Ara-C: cytarabine; BCNU: 1,3-bis (2-chloroethyl)-1-nitroso-urea; CEPP: cyclophosphamide, 
etoposide, procarbazine and prednisone; F: female; GC: germinal center; IHC: immunohistochemistry; IVAC: 
ifosfamide, etoposide, and cytarabine; M: male; MATRIX: methotreate, cytarabine, thiotepa and rituximab; 
MTX: methotrexate; NA: not available; OS: overall survival; PCNSL: primary central nervous system lymphoma; 
R: rituximab; R-CHOP: rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone; R-CODOX-M: 
cyclophosphamide, cytarabine, vincristine, doxorubicin, and methotrexate; R-GCVP: rituximsb, gemcitabine, 
cyclophosphamide, vincristine and prednisolone; R-IDARAM: rituximab, idarubicin, dexamethasone, 
cytarabine, and methotrexate; R-IE: rituximab, ifosfamide and etoposide; RT: radiotherapy; SCNSL: secondary 
central nervous system lymphoma; Tem: Temsirolimus; VIM: etoposide, ifosfamide and mitoxantrone; Vumon: 
teniposide; WBRT: whole brain radiation therapy [Bödör et al., 2020]. 
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Molecular subtyping 

RNA isolation from samples (PCNSL n = 77, SCNSL n = 17) was performed using the 

RecoverAllTM kit (Life Technologies/Ambion, Inc, Foster City USA) following the 

manufacturer’s instructions. Molecular subtypes were determined using the Research Use 

Only version of the LST-assay on the nCounter® Analysis System (NanoString Technologies, 

Inc., Seattle, USA). Linear Predictor Score (LPS) was calculated using a weighted sum of the 

gene expression (15 signature- and 5 housekeeping genes) for all samples. The LPS is 

compared against thresholds that define value ranges for the assignment of ABC or GC 

subtype, or Unclassified within an equivocal zone. 

Customized amplicon sequencing 

Genomic DNA was extracted using the FFPE Tissue Kit (Qiagen, N.V., Venlo, 

Netherlands) following the manufacturer’s protocol from 64 PCNSL and 12 SCNSL samples. 

Five non-malignant tissue specimens were used as negative controls. Mutation profiles of 

14 genes (e.g., CARD11, CCND3, CD79B, CSMD2, CSMD3, IRF4, KMT2D, C-MYC, MYD88, 

PAX5, PIM1, PRDM1, PTPRD and TP53) were determined by targeted NGS using the TruSeq 

Custom Amplicon dual-strand approach (Illumina, Inc., San Diego, USA). This method is 

specifically designed for FFPE samples and utilize two mirrored sets of locus-specific primers 

generating matching complementary and strand-specific amplicon libraries. Separate 

preparation of the sample-specific libraries and sequencing with unique indexes allow for a 

subsequent bioinformatics correction of errors/bias caused by the by FFPE fixation. After 

QC and equimolar pooling, libraries were sequenced on a HiSeq 4000 Instrument using 

PE150 chemistry. 
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Bioinformatics workflow 

Applied bioinformatic pipeline is presented on Figure 4. (see CLL case study). As data 

preprocessing, filtered sequencing reads were mapped to the Ensembl Homo sapiens 

hg19/GRCh37 genome build using BWA v0.7.13 aligner [Li et al., 2021]. BAM files were 

sorted and indexed by SAMtools v1.7 [Danecek et al., 2021], GATK v4.0 BSQR tool [DePristo 

et al., 2011] was run on each sample to detect and correct systematic sequencing errors. 

SNV calling was performed with LoFreq v2.1 variant-caller [Wilm et al., 2010]. Raw variants 

were functionally, and database annotated using SnpEff v4.3i and ANNOVAR v2017Jul17 

tools, including up-to-date information from COSMIC, avSNP and CLINVAR databases 

[Cingolani et al., 2012; Wang et al., 2010]. After the bioinformatic analysis, somatic variants 

detected in sample-specific, matching individual libraries (A and B) were combined based 

on genomic position and allele type using an in-house R script (version 3.4.3 (2017-11-30)). 

Variants exclusively identified in both libraries A and B were considered as true aberrations. 

A subset of somatic variants with variant allele frequency of >20% was validated by 

bidirectional Sanger sequencing. 

Statistical analysis 

Kaplan-Meier survival curves and log-rank tests were performed to compare survival 

times between groups using GraphPad PRISM v. 5.0 software (GraphPad Software, San 

Diego, USA). Pearson Chi-square test or Fisher’s exact test were used to analyse categorical 

data. P values 0.05 or below were considered statistically significant. 
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DNA methylation profiling 

CASE STUDY III.: GBM 

Patient samples 

Surgically removed FFPE GBM specimens were obtained between 1999 and 2017. 

After routine histological work the leftover blocks were used for these molecular analyses 

according to the approval (Number: 7517 PTE 2018 and 2019) from the Regional Clinical 

Research Committee. The characteristics of patients and specimens are summarized in 

Table 7. 

PRIMARY RRBS 
ID RECURRENT RRBS 

ID2 Gender 
Age at 
onset 

(years) 

Age at 
death 
(years) 

Treatment 
T1-T2 
(week

s) 

Overall 
Survival 
(weeks) 

15043 1 9849 R1 man 50 50 No data 31 41 

9501 2 3624 R2 man 52 53 No data 33 59 

15916 4 9527 R4 woman 63 64 S+I 50 Gy 30 43 

9886 5 15289 R5 man 41 43 No data 17 70 

3094 6 15302 R6 man 59 60 S+I+TMZ 35 65 

5526 7 13808 R7 woman 50 52 S+I+TMZ 77 88 

13501 8 9614 R8 man 39 - S+I+TMZ 40 - 

12732 9 17440 R9 man 41 43 S+I+TMZ; B+I 117 149 

17578 10 7779 R10 man 63 - No data 77 - 

15466 11 16534 R11 man 66 - S+I+TMZ 56 - 

10379 12 7536 R12 woman 56 61  STUPP + B/P 199 287 

14561 13 2315 R13 man 45 -  STUPP + B/P 70 - 

2525 14 1365 R14 man 32 36 S + TMZ, B, I 177 203 

14642 15 7990 R15 man 43 46 S+I+TMZ 135 192 

5693 16 612 R16 woman 45 48 S+I+TMZ 143 169 

7183 17 11956 R17 woman 57 59 S+I+TMZ 51 95 

6795 18 17545 R18 woman 61 62 S+I+TMZ 31 54 

16189 19 16742 R19 woman 53 55 S+I+TMZ 55 69 

8117 20 2908 R20 woman 37 40 S+I+TMZ 92 106 

3997 21 5120 R21 man 62 63 S+I+TMZ 58 62 

10776 23 2168 R23 man 43 44 S+I+TMZ 29 46 

13956 24 12107 R24 man 60 62 S+I+TMZ 49 60 

Table 7. Patient’s characteristics. The table summarizes the gender, age at onset and age at death of patients, 
the treatment modalities and T1-T2 time. OS could not be calculated for four patients because the time of 
death was unavailable after extensive search of all electronic medical records. Therefore, instead of OS, the 
T1-T2 time values were used in the statistical analyses; TMZ temozolomide; S surgery; I irradiation; B 
bevacizumab; P placebo [Kraboth et al., 2020].
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The diagnosis of primary GBM was established based on standard clinical and 

histopathological criteria [Louis et al., 2016]. After quality assessment, 22 pairs of isocitrate 

dehydrogenase (IDH)-1 R132H negative, initial (GBM1) and recurrent (GBM2) tumour blocks 

were identified. GBM1 specimens were taken before chemoradiation treatment, and GBM2 

ones at recurrence after chemoradiation. Twenty-one patient received temozolomide-based 

chemo- and radiation therapy after the first surgery. In the first control group (CG1), six 

postmortem FFPE normal brain specimens were used from the tissue archive of the Pathology 

Institute, UP. This step was necessary because no surgically dissected normal brain or other 

neurological disease control FFPE specimens were available. In the second control group 

(CG2), DNA CpG methylation data of five brain specimens obtained during epilepsy surgery 

were included by downloading data from the EBI European genome–phenome archive 

(accession number: EGAS00001002538) [Klughammer et al., 2018]. DNA specimens of CG1 

were processed by the same way as GBM1 and GBM2. DNA specimens of CG2 were also 

processed by RRBS but sequenced on Illumina HiSeq 3000 and 4000 machines [Klughammer 

et al., 2018)] Normal brain contamination could be excluded by the evaluation of a 

hematoxylin–eosin stained section from each tumour. The characteristics of the tumors are 

summarized in Table 8. 
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RRBS 
ID MI MVP Necrosis Atypia Cell TIL LG 

1 36 high none high astro/gemisto focally 
med 

no 

2 2 low palisade 
and geo 

low ependymoma-
like 

med no 

4 10 low none moderate astro no no 
5 91 high geo high ependymoma-

like 
no no 

6 120 high geo low small, spindle many no 
7 20 low geo moderate astro few yes 
8 13 low geo high melanoma-

like 
few no 

9 2 low palisade 
and geo 

low ependymoma-
like 

med no 

10 0 no extensive 
geo 

moderate spindle many no 

11 18 high geo high astro many yes 
12 30 high geo high small many no 
13 36 high palisade 

and geo 
high astro few no 

14 38 high palisade 
and geo 

high small/astro few yes 

15 78 low palisade 
and geo 

moderate small many no 

16 42 low palisade 
and geo 

moderate 
to high 

astro few no 

17 44 high palisade 
and geo 

moderate astro few no 

18 15 low geo moderate astro/gemisto few no 
19 24 no none high oligo few yes 
20 25 high none high astro many no 
21 12 high palisade moderate astro/spindle few no 
23 32 high geo moderate astro/gemisto few no 
24 32 high geo high astro/giant few no 
R1 100 med palisade 

and geo 
moderate small low no 

R2 2 no no low astro many no 
R4 32 high palisade 

and geo 
moderate small no no 

R5 94 moderate extensive 
geo 

high ependymoma-
like 

few no 

R6 4 no geo focally 
high 

spindle few no 

R7 21 no no moderate 
to high 

astro few yes 



 39 

RRBS 
ID MI MVP Necrosis Atypia Cell TIL LG 

R8 20 no palisade 
and geo 

moderate melanoma-
like 

few no 

R9 14 no geo high melanoma-
like 

few no 

R10 50 low palisade moderate astro moderate no 
R11 14 high geo high giant/astro many yes 
R12 62 high palisade high astro many no 
R13 36 high palisade high astro few no 
R14 40 high no high small/astro many no 
R15 16 low palisade 

and geo 
moderate small many no 

R16 12 high palisade 
and geo 

high astro many no 

R17 22 high palisade moderate astro few no 
R18 18 no palisade 

and geo 
focally 
high 

astro/spindle few no 

R19 18 no palisade 
and geo 

high oligo few yes 

R20 20 yes palisade moderate astro/spindle no no 
R21 18 high palisade 

and geo 
mild astro few yes 

R23 10 no no moderate small many yes 
R24 16 no palisade high spindle focally 

many 
no 

Table 8. Summary of histopathological characteristics of GBM1 and GBM2. Histological parameters were 
assessed by manual eyeballing using low microscopic magnification (100x) and semiquantitative evaluation 
criteria published previously [Tompa et al., 2018]. In statistical analyses, semiquantitative determinants were 
replaced by numerical values: e.g., TIL: no = 0, sparse = 1, moderate = 2, dense = 3 MI mitotic index (number of 
mitoses per 10 high power fields), MVP microvascular proliferation, TIL tumor infiltrating lymphocytes [Kraboth 
et al., 2020] 

DNA methylation profiling 

Five cuts from each paraffin block were used for DNA extraction by the QIAamp DNA 

FFPE Tissue Kit (Qiagen GbmH, Hilden, Germany). DNA quality was measured using a Qubit™ 

1X dsDNA HS Assay Kit on a Qubit 3 Fluorimeter (Invitrogen, Carlsbad, CA, USA). The 

distribution of the fragments was determined using an Agilent Genomic DNA ScreenTape 

Assay on an Agilent 4200 TapeStation System (Agilent Technologies, Santa Clara, CA, USA). 

The Premium RRBS kit 24x (Diagenode SA, Seraing, Belgium) was used to prepare the bisulfite 

libraries according to the manufacturer’s instructions. To compensate for higher degrees of 

fragmentation input DNA was increased up to 350–400 ng. Next steps were DNA digestion by 

Msp1, fragment-end repair and adaptor ligation. Lbrary QC was determined using the Kapa 
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Sybr Fast qPCR kit (Kapabiosystems, Cape Town, South Africa) on a StepOnePlus Real-Time 

PCR System (Applied Biosystems, Foster City, CA, USA). Samples with similar Ct values were 

multiplexed in pools of eight. The pools were subjected to bisulfite conversion, followed by a 

second qPCR step to precisely set up the enrichment amplification cycles for the final PCR on 

a GeneAmp PCR Systems 9700 (Applied Biosystems, Foster City, CA, USA). After confirming 

the adequate fragment size distributions and the concentrations, the amplified libraries were 

sequenced using the NextSeq 500/550 High Output Kit v2.5 (single-end 75 cycles, SE75 

chemistry) on a NextSeq 550 machine (Illumina, San Diego, CA, USA). Raw sequencing data 

were uploaded to the European Nucleotide Archive (https://www.ebi.ac.uk/ena, Primary 

Accession: PRJEB38380, Secondary Accession: ERP121800). The glioma CpG island methylator 

phenotype (G-CIMP) was excluded from the cohorts by adapting the eight gene method for 

bisulfite-converted sequence data [Noushmehr et al., 2010]. 

Bioinformatics workflow 

Figure 5 summarize the main steps of the implemented workflow. First basecalling and 

demultiplexing steps were carried out and QC was run on raw FASTQ files using FastQC v0.11.5 

[https://www.bioinformatics.babraham.ac.uk/projects/fastqc]. Sequences were filtered to 

remove low-quality bases and adapters by Trim-Galore [ 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore] using RRBS mode. 

Bisulfite-treated reads were aligned to the bisultife converted human (hg19/GRCh37) 

reference genome and methylation calls were performed using Bismark [Krueger and 

Andrews, 2011]. After obtaining the CpG calls, RnBeads [Müller et al., 2019] was run to identify 

differentially methylated sites, regions, and pathways in the cohorts. The Locus Overlap 

Analysis (LOLA) program, within RnBeads, was used for enrichment analysis of genomic region 

sets and regulatory elements [Sheffield and Bock, 2016]. 
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Figure 5. Used bioinformatic workflow including main steps and checkpoints. 

Statistical analysis 

Patients’ age, gender and time to recurrence (T1-T2) were correlated with histological 

characteristics using the Kruskal–Wallis and Mann–Whitney U tests, and Pearson’s 

correlation. 
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miRNome profiling 

CASE STUDY IV.: NSCLC 

Patient samples 

The study was approved by the Institutional Review Board of Medical University of 

Bialystok and Poznan and informed consent was obtained from each patient. The patients 

were recruited for the MOBIT project. A total of 177 cases of surgically resected NSCLC were 

used in this study. Inclusion criteria for this study were the following: 

• diagnosis of lung AC or SCC based on histologic evidence 

• completely resected tumor (free resection margins) 

• stage I or stage II 

• availability of representative fresh-frozen tumor specimens (at least 50% tumor 

cells) 

• no neoadjuvant chemotherapy 

In the first phase of the research miRNA profiling of all together 109 NSCLC tissue 

samples with matched controls (AC, n = 26; AC_c, n = 25; SCC, n = 30; SCC_c, n = 28) was done 

to describe the molecular background based on the DE miRNAs of the cohort and generate a 

“classification” set (Set 1) using all data and build prediction models. To confirm the results, 

miRNA expression levels as well as the molecular background were evaluated on an 

independent subset of 68 blood samples (AC, n = 32; SCC, n = 36) as a “validation” set (Set 2). 

On purpose, “Set 2” samples were collected from blood due to the limited number of tissue 

samples and development of future non-invasive methods. With respect to clinical 

characteristics (age, gender, disease stage and tumor histology), both groups were 

comparable (Table 9.). 

Histologic diagnosis was rendered according to the most recent WHO classification of 

tumors of the lung [Travis, 2015] and the IASLC/ATS/ERS International Multidisciplinary Lung 

Adenocarcinoma Classification [Feng, 2012]. In case of any disagreement with the original 

diagnosis, the slides were evaluated immunohistochemically (IHC) for the expression of 

thyroid transcription factor-1 (TTF-1) (immunohistochemical profile) and tumor protein p63 

(p63) (squamous immunophenotype). Additionally, all tumor slices were reviewed to evaluate 

the number of neoplastic cells for the RNA extraction. 
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Characteristic Set 1, n = 109 Set 2, n = 68 All, n = 177 
Age (years) Mean ± SD 65.9 ± 6.65 66 ± 5.4 64 ± 7.1 
 Median 65 64 65 
 Range 51 - 81 49 - 80 49 - 81 
Gender Female 41 27 68 
 Male 68 41 109 
Tumor stage IA 17 9 26 
 IB 28 18 46 
 IIA 16 8 24 
 IIB 18 12 30 
 IIIA 22 15 37 
 IIIB 4 2 6 
Histology AC 51 32 83 
 SC 58 36 94 

Table 9. Patient characteristics for the classification set (n = 109) and the validation set (n = 68). SD, standard 
deviation. 

Next-generation sequencing 

Total RNA with small RNA fraction was isolated from fresh frozen tumor samples using 

mirVana™ miRNA Isolation Kit (Ambion, Poland) according to the manufacturer’s instructions. 

RNA quantity and quality were assessed using a UV/VIS spectrophotometer NanoDrop 2000c 

(Thermo Scientific, Poland). The level of RNA integrity number required for analysis (RIN above 

7) was determined for extracted total RNA using Agilent RNA 6000 Nano Kit on apparatus 

Bioanalyzer 2100 (Agilent Technologies, USA). Before constructing the RNA-seq libraries, the 

epicenter Ribo-ZeroTM Kit (Illumina, San Diego, CA, United States) was used to remove rRNA. 

Briefly, total RNA was purified by polyacryl-amide gel electrophoresis (PAGE) to enrich the 

sRNAs with lengths of 15–35 nt, then the sRNAs were ligated with adapters and amplified by 

RT-PCR. The amplification products were then separated by PAGE, and the transcriptome 

sequencing was performed on the HiSeq 2500 platform using SE50 chemistry. 

Bioinformatics workflow 

The data analysis process is shown on Figure 6. First, TrimGalore 

[https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/] was used for filter 

reads based on quality, discard sequences smaller than 13 bp from the original data and 

remove adapter contamination. The quality metrices of the sequences were checked before 

and after cleaning the data by using FastQC v0.11.5 

[http://www.bioinformatics.babraham.ac.uk/projects/fastqc]. Then, the clean data was 
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mapped to the human reference genome (hg19/GRCh37) using STAR [Dobin et al., 2013] with 

miRNA specific parameter set. Finally, raw count matrix was generated using Rsubread 

package [Liao et al., 2019]. The quality of the mapping and sample relations are studied 

applying several different methods including visualization using in-house R v3.6.3 scripts. If 

low quality samples or data outliers are detected, they may be excluded from further analysis 

at this point. The data are also normalized to reduce systematic noise caused by non-biological 

sources and to improve the comparability of the samples. 

 
Figure 6. The analysis workflow for miRNA-seq data. 
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Statistical analysis 

After the pre-processing, statistical testing is performed between the compared sample 

groups. The results from the testing are used to filter the so-called DE or differentially 

expressed miRNAs. The filtering is based on the statistical significance and the size of the 

difference in the mean expression levels between the sample groups. In NGS data analysis all 

pre-processing steps were executed within Rstudio 2020 using R v3.6.3 

[http://www.rstudio.com/]. The probes were normalized applying quantile normalization 

method. As a result, a dataset with more than 200 miRNAs were obtained. R-package limma 

(Smyth, 2004, and Ritchie et al., 2015) was used to assess statistical significance of differences 

in miRNA expression between two histological subtypes of NSCLC (AC and SCC). The analysis 

of differential expression between AC and SCC patients was adjusted for gender and tumor 

stage. For each miRNA, a linear model with the histological subtypes, gender and stage as 

covariates was fitted. After fitting the models, the differences were tested with a t-test. The 

Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) was applied to correct for 

multiple testing with FDR = 0.05. The data analysis steps were conducted for the classification 

and validation set as well. 

Finally, potential target genes of DE miRNAs were identified to carry out enrichment 

analysis to gain more functional information about molecular background of the subgroups. 

Functional analysis as a term covers all analyses of the expression results taking the functional 

annotations of genes into account. In this type of analysis, the focus is on pathways and other 

functional categorizations instead of single genes. Here the enrichment of functional terms 

and pathways within the differentially expressed miRNA target gene list has performed using 

the mirPath v.3 tool [Vlachos et al., 2015]. All analyses have been conducted against the KEGG 

[Kanehisa and Goto, 2000] databases which are the most commonly used databases for this 

purpose. Gene Ontology provides a hierarchical organization of genes into biological 

processes, molecular functions and cellular components whereas KEGG lists pathways for 

biological interactions. More information on these databases can be found on the KEGG 

websites. 
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Biomarker prediction 

The CAncer bioMarker Prediction Pipeline (CAMPP) [Terkelsen et al., 2019] was run to 

identifiy possible biomarker using the classification dataset. Results were stratified for cancer 

staging. The pipeline can perform the following types of analysis: 

• Differential expression/abundance analysis (limma [Ritchie et al., 2015]) 

• LASSO/Elastic-Netregression (glmnet) 

• Weighed Gene Co-expression Network Analysis (WGCNA [Langfelder and Horvath, 2015]) 

• Correlation analysis (Pearson/Spearman) 

• Survival analysis (Cox proportional hazard regression, survcomp [Schröder et al., 2011]) 

• Protein-protein/gene-miRNA interaction network analysis (multimiR [Ru et al., 2014] and 

the STRING [Jensen et al., 2008]). 

In addition to the above-mentioned different types of analysis the pipeline performs 

missing value imputation, normalization, and transformation, along with data distributional 

checks. 

Next, the identified potential biomarkers were used for classifying the training dataset. 

Decision tree model was built using rpart R package [https://CRAN.R-

project.org/package=rpart]. Decision Tree is a supervised machine learning algorithm which 

can be used to perform both classification and regression on complex datasets. They are also 

known as Classification and Regression Trees (CART). Hence, it works for both continuous and 

categorical variables. Normalized miRNA data was used as input for model building. Finally, 

the fitted model was used to predict outcomes (AC or SCC) in the validation blood dataset and 

precision value was calculated using the confusion matrix approach. 
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Assisted reproduction 

CASE STUDY V.: NIPGT-A 

Proposed workflow 

After the registered pregnancy outcome, SCM samples and corresponding blank culture 

media droplets were sequenced for CNV analysis. The developed comprehensive workflow 

shows the entire clinical procedure of IVF, the embryo culture and the wet-lab handling and 

dry-lab bioinformatics steps of sample processing as well (Figure 7.). The following sections 

briefly describe the main steps of the proposed workflow applied to the 40 selected samples. 
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Figure 7. Representation of the entire workflow with all four main steps including Step 1: IVF procedure and 
sample collection, Step 2: Whole genome amplification. Step 3: Next-generation sequencing and Step 4: 
Bioinformatics analysis [Gombos et al., 2021]. 
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Patient samples 

To validate our workflow SCM dropltes (n = 7) of Day 3 embryos fertilised using 

intracytoplasmic sperm injection (ICSI) method and presenting good quality scores on 

morphology assessment were collected prospectively in the Assisted Reproduction Unit, 

Department of Obstetrics and Gynaecology, University of Pecs, Hungary. The work described 

here was approved by the Committee of Human Reproduction, National Science Council of 

Hungary: 5273-3-2012/HER, later superset by Public Health Officer Hungarian Government 

Office in Baranya County: BAR/006/58-2/2014). The research related to human use has been 

complied with all the relevant national regulations, institutional policies and in accordance 

with the tenets of the Helsinki Declaration. 

The oocytes selected for ICSI were denuded carefully with hyaluronidase and assessed 

for maturity. Only metaphase II oocytes (n = 753), which had polar body, were chosen for 

fertilisation. ICSI was performed after oocyte recovery (3–6 h) in a bicarbonate-buffered 

medium (G-IVF, Vitrolife, Gothenburg, Sweden). Fertilisation was checked next day (24 h later) 

and embryos were transferred to G-1 v5 medium (Vitrolife) supplemented with human serum 

albumin (HSA; Vitrolife) in 5 mg/mL concentration. Embryos (n = 542) were cultured following 

a sequential culture protocol (~ 40 µL culture medium) and moved to fresh medium droplets 

on Day 3 (n = 514) and 20 µL of the SCM was collected. As negative control, we collected the 

same amount of blank culture medium and were collected from the same LOT of medium and 

HSA. All collected samples were frozen immediately in liquid nitrogen and stored at –80 °C. 

Further sample selection was based on the optimised criteria system (OCS) evaluation [7] and 

only embryos were chosen that fulfilled good composite score (e.g., high blastomere number 

³7, symmetric position, fragmented cell rate <10%). Selected embryo morphology parameters 

and parental gynaecological characteristics are summarized in Table 10. 
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 Healthy Neonate 
(Group 1) 

Miscarriage 
(Group 0) 

Number of embryonic culture media 
samples sequenced 20 20 

ICCS Scoring parameters of D3 embryos Group 1 Group 0 

average blastomere number 8.2 8.6 

fragmentation by volume <10% <10% 

blastomere symmetry full full 

Clinical characteristics Group 1 Group 0 

female average age 35.18 34.74 

cause of infertility -tubal factor 27.27 22.5 

cause of infertility male factor 45.45 42.5 

cause of infertility -other 27.27 25 

basal FSH (Follicle Stimulating Hormone) cc 
(IU/µL) 7.63 7.2 

previous miscarriage 0 0 

oocyte collected 9.3 8.6 

available embryos for culture 2.5 2.5 
Table 10. Embryo morphology parameters and parental gynaecological characteristics [Gombos et al., 2021]. 

After registration of pregnancy outcome in 184 cases, all spent embryo culture media 

samples were used for the downstream laboratory analysis. Twenty embryos were selected 

for the miscarriage Group 0. From embryos that developed to healthy neonates (n = 83), a 

matching number of 20 were randomly selected for group comparison and denoted as Group 

1. Culture media samples were handled carefully to prevent media cross-contamination. Five 

µL from embryo’s SCM was transferred into RNase–DNase-free PCR tubes mixed with 5 µL cell 

lysis buffer (Yikon Genomics, Beijing, China). 

Next-generation sequencing 

The multiple annealing and looping-based amplification (MALBAC) whole-genome 

amplification (WGA) method was applied to amplify DNA from the collected samples, 

following the manufacturer’s protocol (Catalogue no. YK001B; Yikon Genomics, Beijing, 

China). Concentration of the WGA products were assessed using the Qubit 2.0 fluorometric 

quantitation system (Life Technologies, Carlsbad, CA, USA). Due to low sample quality, only 

28 out of 40 samples were selected for the next processes. NGS libraries were prepared from 
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50 ng input material using the Nextera DNA Library Preparation Kit (Illumina, San Diego, CA, 

USA) with Nextera DNA Combinatorial Dual Indices. After QC step, individual libraries were 

diluted, equimolarly pooled, and sequenced on Illumina HiSeq 4000 using 50bp single-end 

(SE50) chemistry. The raw sequencing data was uploaded to the European Nucleotide Archive 

(https://www.ebi.ac.uk/ena, Primary Accession: PRJEB38821, Secondary Accession: 

ERP122272, 31 December 2020). 

In real clinical practice a smaller sequencing instrument developed for clinical 

applications, such as MiSeq or iSeq, would be more practical and cost efficient to fulfil the 

requirements. 

Bioinformatics workflow 

During data pre-processing, overall quality metrics of raw sequencing reads were 

checked using FastQC v0.11.5 [http://www.bioinformatics.babraham.ac.uk/projects/fastqc]. 

Based on these results the dataset was cleaned by removing remaining adapters and low-

quality (£ Q30) parts using Cutadapt v1.18 [Marcel, 2011] and TrimGalore v0.4.1 

[https://www.bioinformatics.babraham.ac.uk/projects/trim_galore] (Figure 7. STEP 4). Next, 

filtered sequences were mapped to the Homo sapiens hg19/GRCh37 reference genome using 

bwa mem algorithm of the BWA v0.7.13 aligner [Li et al, 2020]. BAM files were sorted and 

indexed by SAMtools v1.7 modules [Danecek et al., 2021]. For further QC mapping quality and 

alignment statiscic results were summarised for each sample using QualiMap bamqc v2.2.1 

[Okonechnikov et al., 2016]. MutliQC v1. [Ewels et al., 2016] was run to combine mapping 

reports into one. Based on the mapping quality results 22 out of 28 samples were selected for 

further analysis. 

The read-count-based CNV prediction tool cn.MOPS v1.30.0 [Klambauer et al., 2012] 

was optimized to carry out NIPGT-A analysis. Telomere and centromere regions were excluded 

from the analysis. Cause of the low sequencing coverage read numbers were counted in 1 Mb 

bin size along the whole genome. A copy number gain from two to three copies results in a 

50% increase in read counts, whereas a copy number loss from two copies to one result in a 

50% decrease in read counts. Results were exported in various formats (e.g., tabular and VCF). 

In the downstream analysis the identified alterations were visualized using R (version 3.4.3 

(2017-11-30)) and functionally annotated by UNIQUE database 

[https://www.rarechromo.org, 31 December 2020], Genetic Alliance database 
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[https://www.geneticalliance.org.uk, 31 December 2020] and CDO database 

[https://chromodisorder.org, 31 December 2020]. 

Statistical analysis 

To validate the statistical significance of the identified CNVs, ORs were calculated with 

95% confidence intervals using the epi.2by2 function from the epiR R programming package 

[https://CRAN.R-project.org/package=epiR]. Two counting methods of CNV events were 

applied. First, CNVs were counted separately as simple events. Second, all events in one 

chromosome were merged into one large event. Applying the latter method, we could reduce 

the false positive CNVs that result from the low sequencing coverage. Results were visualised 

using the ggplot2 R package [https://CRAN.R-project.org/package=ggplot2]. 
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Results 

Somatic mutation profiling 

CASE STUDY I.: CLL 

Mutation profile of the cohort 

The bioinformatic analysis revealed a total of 211 relevant somatic variants in the 20 

paired samples with an average coverage of 7500x across the 30 genes (Figure 8.). Most of the 

variants represented subclonal (157/211) with VAF of <10% and with remarkable 

heterogeneity across the cases. Average of 5 mutations (range: 0-19) detected in individual 

patients, affecting an average of 4 genes (range: 0-18). The most frequently mutated genes 

were: 

• NOTCH1 (70%) 

• ATM (70%) 

• TP53 (65%) 

• BCOR (55%) 

All somatic variants with a VAF of >20% were successfully validated by Sanger sequencing. 
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Figure 8. Heat map displaying the somatic variants detected in the 30 target genes analysed in the sequential 
samples of 20 patients treated with ibrutinib. Illustrated are the distribution of the somatic variants, mutation 
status of the IGHV gene, cytogenetic profile as determined by fluorescence in situ hybridization, as well as the 
mutation frequency of the individual genes for all cases [Gángó et al., 2019]. 

Temporal dissection of the mutational profile 

The post-treatment samples carried a slightly higher number of variants compared to 

the pre-treatment ones (118 vs 93), with an average of 5.9 mutations (range: 1-16) in the 

posttreatment specimens and on average 4.7 mutations in the pre-treatment samples (range: 

0-19) (Figure 9.). 

 
Figure 9. the number of mutations detected in the pre- and post-treatment samples of the 20 patients treated 
with ibrutinib [Gángó et al., 2019]. 
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As mentioned before NOTCH1, ATM, TP53 and BCOR represented the top four mutated 

target genes at baseline as well as post-treatment (Figure 10.). I contrast with that IGLL5, EIF2A 

and EP300 mutations were eliminated from the post-treatment samples and the enrichment 

of SF3B1 (5% vs 40%), MGA (5% vs 30%), BIRC3 (10% vs 30%) mutations were observed in the 

post-treatment samples compared to the pre-treatment specimens (Figure 10.). BTK, PLCG2, 

RIPK1, NFKBIE and XPO1 mutations were exclusively detected in the posttreatment samples 

in 35, 15, 10, 5 and 5% of the patients, respectively (Figure 10.). 

 
Figure 10. Comparison of the mutation frequency in the 30 genes analysed between the pre- and post-treatment 
specimens [Gángó et al., 2019]. 

Interestingly, multiple mutations in the same gene (convergent mutation evolution; 

CME) [Kiss et al., 2019] was identified in 40% of the genes, with 2-4 mutations per gene. 

Overall, CME was observed in 50% of patients and it was documented in both pre- and post-

treatment samples in four patients and in either pre- or post-treatment samples of the three 

patients. 
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Subclonal dynamics 

Mutations in associated with ibrutinib resistance were detected in 40% and 5% of the 

cases in BTK and PLCG2 genes respectively, with mutations exclusively detected in the post-

treatment samples. The BTK and PLCG2 variants co-occurred in few patients carrying 

mutations in one of these genes with (1-4 variants/patients). In addition to the canonical BTK 

Cys481 and PLCG2 Asp993 hotspots, four novel BTK mutations were identified (e.g., Arg28, 

Gly164, Arg490 and Gln516) (Figure 11a), with three previously unreported PLCG2 mutations 

(e.g., Phe82, Arg694 and Ser1192) (Figure 11b), affecting four different patients. 

 

 
Figure 11. (a) Schematic domain structure of BTK with variants observed in our study cohort and/or identified by 
previous studies. We observed mutations within the PH, TH and TK domains of the protein. (PH: Pleckstrin 
homology; TH: Tec homology; SH3/2: Src homology 3/2; TK: Tyrosine kinase). Variants highlighted with red were 
detected in patients with CLL, while blue variants were observed in patients with Richter’s transformation. BTK 
R28S, G164D, R490H and Q516K represent previously unreported variants, based on the COSMIC database. (b) 
Schematic domain structure PLCG2 with variants observed in our study cohort and/or identified by previous 
studies. (PH: Pleckstrin homology; EF: EF-hand motifs; X: X domain; SH2/3: Src homology 2/3; Y: Y domain; C2: 
calcium-binding motif) Variants highlighted with red were detected in patients with CLL, while blue variants were 
observed in patients with Richter’s transformation. PLCG2 F82S and S1192G are previously unreported variants 
not annotated in COSMIC database. The PLCG2 R694H variant was previously reported in two colon cancer cases 
(COSM2693625); however, it represents a novel finding in CLL [Gángó et al., 2019]. 
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Notably, an alternating dynamic of BTK and TP53 mutations was observed in almost all 

patients. The emergence of BTK mutations upon ibrutinib treatment was accompanied by the 

concurrent decrease of TP53 mutational abundance. Among the six patients harbouring BTK 

Cys481 mutations (Patients #1, #5, #6, #10, #11 and #20), all four patients carrying TP53 

mutations (Patients #1, #5, #11, #20) demonstrated clonal elimination or reduction of the 

TP53 alteration in the post-treatment sample (Figure 12.). 

Elimination of a TP53 mutation was also observed in Patient #17, acquiring a 

noncanonical BTK mutation. On the other hand, subclones carrying TP53 mutations persisted 

or expanded in 8/20. Also, other interesting patient specific events were obese during the 

study [Gángó et al., 2019] data was not show



 58 

 

 
Figure 12. Dot plot illustration of the changes in mutational composition and heterogeneity between the pre- and post-treatment samples [Gángó et al., 2019].
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CASE STUDY II.: PCNSL 

Molecular subtypes 

Using the Hans algorithm (Figure 13.) in the PCNSL cohort 95% of the cases showed ABC 

(non-GCB) and 5% of the cases showed GCB phenotype. In contrast, the LST-assay identified 

only 80.5% of the cases as ABC and 13% as GCB and 6.5% as UC subtypes, respectively. As for 

the SCNSL group, 47% classified as ABC and 53% as GCB phenotype. The ratio was identical 

using the LST-assay. 

 

  
Figure 13. The Hans algorithm [Hwang et at., 2013]. 

The sub-classification obtained with the NanoString LST-assay showed discordant results 

in 16% of all cases (PCNSL, n = 13; SCNSL, n = 2) as compared to the IHC results. Twelve cases 

classified as ABC by the Hans algorithm showed a different readout using the LST-assay. Seven 

cases were assigned to the GCB group and 5 UC and only one IHC-GCB case was classified as 

ABC using the LST-assay (Figure 14). In the SCNSL group, only a single GC and a single ABC case 

did not match when comparing the classification results to the Hans algorithm. Overall, using 

the LST-assay, a significantly lower portion of the cases (80.5% versus 95%, p = 0.0219) were 

classified as ABC phenotype in PCNSL. 
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Figure 14. The NanoString LST readouts are illustrated in form of a gene expression heat map with the 15 target 
genes contributing to the model. Abbreviations: ABC: activated B-cell; GC: germinal centre; IHC: 
immunohistochemistry; PCNSL: primary central nervous system lymphoma; SCNSL: secondary central nervous 
system lymphoma; UC: unclassified [Bödör et al., 2020]. 

Mutation profiles of the cohort 

A total of 239 relevant mutations were identified across the brain lymphomas (n = 76) 

with VAF min. 1.8 and max. 96.2% (mean: 41.4%). The majority (81%) of the mutations 

presented with a VAF ³20%. A total of 210 somatic mutations were detected in the 64 PCNSL 

cases across the 14 target genes, with an avg. of 3.3 mutations/case (range: 0-10). Individual 

cases contained mutations in avg. 2.6 genes (range: 0-5). The distribution of the mutations 

was as follows: 

• missense mutations: 75.2% 

• mutations in 5’/3’ prime UTR regions: 11.4% 

• mutations at splice sites: 7.6% 

• in frame deletions: 3.3% 

• frameshift mutations: 1.9% 

• nonsense mutations: 0.5% 

The most frequently mutated genes in the PCNSL cohort were MYD88 (66%), PIM1 (41%), 

KMT2D (31%) and PRDM1 (30%) (Figure 15.). No mutation was detected in PTPRD. 
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In the 12 SCNSL patients, a total of 29 somatic mutations were identified, with avg. 2.4 

mutations (range: 0-5). The distribution of the mutations was as follows: 

• missense mutations: 72.4% 

• mutations in 5’/3’ prime UTR regions: 20.7% 

• frameshift mutations: 3.5% 

• mutations at splice sites: 3.5% 

Individual cases had mutations in avg. 1.8 genes (range: 0-4). The most frequently mutated 

target genes in the cohort were PRDM1 (50%), MYD88 (42%) and PIM1 (25%). No mutation 

was identified in CARD11, CSMD2, CSMD3 and PTPRD genes. 

Correlation of mutation profiles and molecular subtypes 

Considering all brain lymphomas, an enrichment was observed in MYD88, PIM1, IRF4 

and MYC in cases with ABC subtype, with mutations presented exclusively in CD79B, CARD11, 

CSMD2 and CSMD3 in ABC cases (19%, 9%, 4% and 4% vs 0% for the four genes, respectively). 

On the other hand, mutations of TP53 and PAX5 appeared to be more frequent in GC cases. 

As the results of the comparison of GC and ABC cases PRDM1, KMT2D and CCND3 showed 

similar mutational frequencies (Figures 16.). 

 
Figure 16. Comparison of mutation profiles between (A) primary and secondary central nervous system 
lymphomas, (B) all brain lymphomas of activated B-cell type (ABC) versus germinal center B-cell type (GC) and 
(C) primary brain lymphomas of ABC versus GC type. Abbreviations: ABC: activated B-cell; GC: germinal centre; 
NANO: NanoString; PCNSL: primary central nervous system lymphoma; SCNSL: secondary central nervous system 
lymphoma [Bödör et al., 2020]. 
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In PCNSL, enrichment of PIM1 mutations was observed (41% vs 20%) in ABC subtypes, 

with IRF4, CD79B, MYC, CARD11, CSMD2 and CSMD3 mutations being present exclusively 

(22%, 20%, 20%, 10%, 4% and 4% vs 0% for the six genes, respectively). In PCNSL group 

samples classified as GCB, mutations of TP53 (20% vs 6%), PAX5 (20% vs 2%) and CCND3 (20% 

vs 8%) appeared to be more frequent compared to the ABC subtypes. Other genes like YD88, 

PRDM1 and KMT2D showed similar mutational frequencies across ABC and GCB subtypes 

(Figures 16.). Regardless of the enrichment of these mutations, none of the above-mentioned 

differences were statistically significance when between the GC and ABC groups were 

compared (data not shown). 
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DNA methylation profiling 

CASE STUDY III.: GBM 

Methylation dataset 

DNA CpG methylation patterns were compered in normal brain tissues and IDH-wild-

type GBM specimens at initial diagnosis (GBM1) and at first recurrence (GBM2). Initially, two 

control groups (CG) were considered. The first group named CG1 included the methylomes of 

postmortem normal brain tissues (n = 6) from those who died from non-neurological causes. 

CG2 included the dataset of five FFPE brain tissues obtained during epilepsy surgery 

[Klughammer et al., 2018]. The main study group was represented as the 22 pairs of sequential 

surgically obtained FFPE GBM specimens in GBM1 and GBM2. According to the TapeStation 

analyses DNA fragmentation was slightly higher in GBM1 than in GBM2 (21.65% vs 25.10% of 

DNA ³2000 bp). Cause of sample quality and quantity issues few samples were left out from 

the fragment analysis. In contrast with that, fragment rates were significantly different in 

freshly drawn total blood (87.15%) and in buffy coat (70.18%) (Table 11.). 

GBM1 Average size 
150-2000 bp % of Total 

Average size 
2000-60000 

bp 
% of Total 

1_RRBS 558 85% 7014 10% 

2_RRBS 700 66% 7810 23% 
3_RRBS 647 80% 6571 16% 

4_RRBS 745 76% 6267 20% 

5_RRBS 771 74% 6954 21% 
6_RRBS 603 80% 7446 15% 

7_RRBS 620 84% 6073 12% 

8_RRBS 660 76% 7081 17% 
9_RRBS 583 83% 7598 13% 

10_RRBS 810 75% 6105 22% 

11_RRBS 659 79% 7003 17% 
12_RRBS 767 73% 6665 24% 

13_RRBS 813 65% 7275 28% 

14_RRBS 770 77% 6188 20% 
15_RRBS 781 79% 5699 18% 

16_RRBS 682 70% 8274 19% 

17_RRBS 815 64% 7404 26% 
18_RRBS 504 84% 7668 11% 

19_RRBS 887 68% 6184 28% 
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20_RRBS 986 64% 5428 30% 

MEAN 718.1 75.05% 683.4 19.54% 

GBM2 Average size 
150-2000 bp % of Total 

Average size 
2000-60000 

bp 
% of Total 

1R_RRBS 796 66% 7548 27% 

2R_RRBS 731 65% 8767 23% 
3R_RRBS 658 85% 5806 12% 

4R_RRBS 890 59% 7378 33% 

5R_RRBS 735 79% 6473 16% 
6R_RRBS 494 85% 8538 23% 

7R_RRBS 771 64% 7848 24% 

8R_RRBS 726 79% 6530 17% 
9R_RRBS 699 81% 5960 16% 

10R_RRBS 948 60% 6634 33% 

11R_RRBS 929 59% 6834 32% 
12R_RRBS 758 66% 7479 24% 

13R_RRBS 848 75% 5815 23% 

14R_RRBS 783 77% 5823 21% 
15R_RRBS 876 60% 7472 32% 

16R_RRBS 1040 40% 8204 43% 

17R_RRBS 699 80% 6894 17% 
18R_RRBS 887 57% 7231 34% 

MEAN 792.7 68.68% 7068.6 25.01% 

CONTROL Average size 
150-2000 bp % of Total 

Average size 
2000-60000 

bp 
% of Total 

Buffy Coat 948 5.81% 25535 70.18% 

Total blood 900 7.80% 15207 87.15% 

Table 11. DNA fragmentation statistics [Kraboth et al., 2020]. 
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The bisulfite conversion rates for all GBM1/2 samples are represented in Table 12. The 

mean underconversion rate was 1.32%, and the mean overconversion rate was 1.70% based 

on the spike-in controls. 

GBM1 Unmeth conv. 
eff. (%) 

Meth conv. 
eff. (%) GBM2 Unmeth conv. 

eff. (%) 
Meth conv. 

eff. (%) 

1_RRBS 99.77 98.82 1R_RRBS 99.87 98.76 

2_RRBS 98.43 99.97 2R_RRBS 95.22 98.17 

4_RRBS 99.36 99.94 4R_RRBS 99.77 95.51 

5_RRBS 97.62 99.98 5R_RRBS 96.95 99.66 

6_RRBS 97.80 99.09 6R_RRBS 99.87 99.00 

7_RRBS 99.49 94.61 7R_RRBS 99.55 99.19 

8_RRBS 96.14 99.84 8R_RRBS 97.57 99.46 

9_RRBS 97.97 99.94 9R_RRBS 96.93 95.83 

10_RRBS 99.46 99.58 10R_RRBS 99.80 99.59 

11_RRBS 97.37 96.35 11R_RRBS 98.94 98.62 

12_RRBS 96.75 98.77 12R_RRBS 99.63 95.39 

13_RRBS 98.63 98.98 13R_RRBS 95.97 94.62 

14_RRBS 99.86 96.69 14R_RRBS 96.99 99.95 

15_RRBS 99.78 99.99 15R_RRBS 99.29 99.93 

16_RRBS 99.65 98.63 16R_RRBS 99.77 98.89 

17_RRBS 99.77 99.42 17R_RRBS 99.61 94.33 

18_RRBS 99.28 97.32 18R_RRBS 98.00 95.61 

19_RRBS 99.27 99.70 19R_RRBS 99.32 99.38 

20_RRBS 99.02 99.03 20R_RRBS 99.97 99.91 

21_RRBS 99.71 95.32 21R_RRBS 96.73 99.65 

23_RRBS 99.81 99.89 23R_RRBS 97.97 97.65 

24_RRBS 99.72 97.64 24R_RRBS 99.24 96.51 

Mean 98.85 98,61   98,50 97.98 

Table 12. Conversion rates or GBM1 and GBM2 samples [Kraboth et al., 2020]. 

In the nondeduplicated raw dataset the average mapping rate of the reads was 69% and 

the mean number of informative CpGs per sample was 20 741 979 (median: 16 574 809). 

Interestingly, these numbers are over ten times higher than expected ones due to duplications 

during library amplification. During RRBS data analysis deduplication is not recommended, 

because it could result in biases in the CpG representation. To overcome this issue 19 936 CpG 

sites with overlapping SNPs were removed and CpGs with extremely high coverage were 

filtered out for the correction. As was expected fewer informative CpGs could be identified in 

samples with lower quality. Due to the differences in surgical and postmortem FFPE specimens 

a higher mean CpG methylation rate (47.91%) was noted in CG2 compared to CG1 (32.31%). 
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CG1 data was abandoned cause of the extremely high level of DNA fragmentation (5.91% of 

DNA ³2000 bp). Therefore, CG2 dataset was used as reference in all subsequent analyses. 

Overall, a shift toward hypomethylation was observed when comparing the controls and the 

sequential tumor samples. The mean CpG methylation levels were 47.91%, 41.34% and 31.6% 

in the CG2, GBM1 and GMB2, respectively. The methylation differences showed only a trend 

in the GBM1 vs CG2 comparison (Kruskal–Wallis test p = 0.35) but was significance in the 

GBM2 vs GBM1 (p = 0.046) and GBM2 vs CG2 (p = 0.032) comparisons. 

Differential DNA methylation profiles in CG2, GBM1 and GBM2 

The filtered and corrected data had a mean CpG site number of 60 169.48 and mean 

coverage of 366x. Apart from CpG sites, four regions were covered by the analyses like tiling, 

genes, promoters and CpG islands. Table 13. shows the detailed statistics of these regions. 

Group comparisons (CG2–GBM1, CG2–GBM2, and GBM1–GBM2) were focused only on 

differential methylation rates in gene promoters because the site and region levels revealed 

no FDR corrected p-values of ≤ 0.05. Detailed description of the results could be found in 

Tompa et al., 2018. Briefly, as the result of the GO analyses, hypermethylation was observed 

within promoter regions related to pathways of neuronal differentiation, morphogenesis, 

transcription and metabolic processes in GBM1 compared to CG2. The most significantly 

hypermethylated elements were linked to gastrulation regulation and cellular responses to 

the fibroblast growth factor. Other genes showed higher degrees of promoter methylation, 

but with lower degrees of significance.
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Table 13. Sample coverage data in various regions (e.g., tiling, genes, promoter, CPG island) [Kraboth et al., 2020]. 

sampleName sites num sites 
covgMean tiling num tiling 

covgMean
tiling num 
SitesMean

genes 
num

genes 
covgMean

genes num 
SitesMean

promoters 
num

promoters 
covgMean

promoters num 
SitesMean

cpgislands 
num

cpgislands 
covgMean

cpgislands 
numSites Mean

1R_RRBS 50510 220,98 15098 732,92 0,1848 8586 1076,16 1,3675 4946 1094,57 0,9284 5057 1230,92 1,4566
1_RRBS 30742 359,56 18856 579,07 0,1121 7748 1003,83 0,7016 1884 984,78 0,2188 1285 1438,76 0,3011
2R_RRBS 30959 228,59 9199 761,67 0,1133 6013 988,53 0,8511 3402 1139,87 0,6125 3505 1234,35 0,9474
2_RRBS 39535 259,68 10503 967,76 0,1445 6918 1262,41 1,1032 4406 1355,49 0,8333 4438 1513,95 1,2725
4R_RRBS 38218 253,26 14835 645,49 0,1396 7966 983,17 0,9983 3858 1182,92 0,6145 3497 1357,90 0,8841
4_RRBS 18117 277,09 5679 875,05 0,0662 3946 1081,85 0,4940 2085 1281,55 0,3426 2165 1375,27 0,5273
5R_RRBS 57847 247,76 14352 988,46 0,2113 8761 1380,53 1,5945 5599 1375,77 1,1399 5890 1520,74 1,8105
5_RRBS 43283 281,83 12055 1002,41 0,1583 7464 1377,59 1,1822 4451 1423,89 0,8299 4586 1499,06 1,2655
6R_RRBS 53368 268,08 18837 752,11 0,1951 9513 1176,55 1,3935 5036 1154,92 0,8743 4735 1228,13 1,2972
6_RRBS 111177 299,56 28171 1170,28 0,4064 13620 2014,69 3,0441 8977 1682,34 2,0405 8798 1890,77 3,1868
7R_RRBS 3412 367,21 1624 760,60 0,0125 1117 892,78 0,0870 374 1294,15 0,0471 324 1813,19 0,0699
7_RRBS 8420 384,32 3769 850,54 0,0308 2377 1013,99 0,2065 966 1308,47 0,1325 849 1459,82 0,1841
8R_RRBS 38117 290,44 11215 977,61 0,1394 6967 1319,58 1,0315 3979 1405,86 0,7340 3992 1522,18 1,0977
8_RRBS 27317 514,20 14134 982,16 0,0996 6906 1471,60 0,6621 2303 1471,44 0,3162 1869 1745,94 0,4397
9R_RRBS 18029 407,66 7825 930,76 0,0659 4681 1212,12 0,4578 1964 1473,05 0,2758 1703 1673,87 0,3843
9_RRBS 20207 434,13 8252 1049,90 0,0738 4791 1433,40 0,5254 1787 1750,77 0,2805 1775 1898,86 0,4355
10R_RRBS 96021 287,65 19493 1404,02 0,3513 11896 2045,74 2,7435 8783 1909,30 2,1011 8598 2111,37 3,1481
10_RRBS 71108 751,73 37724 1399,53 0,2594 12552 2875,73 1,6254 4640 2212,31 0,6551 3375 2719,11 0,8748
11R_RRBS 25306 421,95 11512 917,43 0,0925 6276 1297,12 0,6414 2581 1376,30 0,3621 2255 1535,20 0,5067
11_RRBS 27778 344,49 8921 1060,37 0,1014 5884 1348,56 0,7571 3141 1386,78 0,4920 3020 1522,92 0,7281
12R_RRBS 15326 527,81 7520 1063,16 0,0560 4268 1431,14 0,3711 1476 1791,07 0,2011 1220 2124,16 0,2728
12_RRBS 11805 578,29 6551 1031,23 0,0431 3700 1324,49 0,2787 1018 1627,21 0,1217 769 2054,10 0,1618
13R_RRBS 82818 291,48 16698 1431,38 0,3029 10691 1970,68 2,3427 7856 1817,50 1,7680 7740 1958,58 2,6331
13_RRBS 88785 248,03 21723 1004,54 0,3248 11858 1584,53 2,4451 7942 1421,61 1,6764 7908 1582,47 2,6066
14R_RRBS 61306 384,07 14628 1594,19 0,2242 9160 2209,25 1,7117 6235 2076,15 1,2449 5918 2293,48 1,8319
14_RRBS 32731 218,22 9720 727,17 0,1197 6295 957,71 0,8938 3701 1130,39 0,6563 3725 1175,22 0,9840
15R_RRBS 44050 238,63 12073 861,43 0,1609 7452 1211,51 1,2069 4383 1201,65 0,8196 4348 1419,70 1,2579
15_RRBS 11854 466,83 5587 979,12 0,0432 3321 1240,55 0,2912 1084 1682,84 0,1610 979 1802,21 0,2326
16R_RRBS 61720 347,23 19366 1094,22 0,2254 10385 1685,57 1,6677 6131 1633,89 1,1163 5811 1764,14 1,6523
16_RRBS 68191 340,55 28575 803,07 0,2490 11847 1478,68 1,7409 5956 1247,96 0,9765 5343 1437,77 1,4460
17R_RRBS 24611 313,69 6458 1185,59 0,0901 4649 1429,63 0,6839 2823 1591,37 0,5110 2994 1685,21 0,7928
17_RRBS 5047 953,14 3324 1433,37 0,0185 1853 1689,98 0,1097 293 1870,72 0,0301 185 2756,20 0,0395
18R_RRBS 10764 272,53 3334 872,40 0,0394 2426 997,95 0,2848 1308 1273,57 0,2207 1354 1303,36 0,3252
18_RRBS 24827 395,89 6150 1585,30 0,0909 4567 1829,62 0,6964 2913 1939,31 0,5147 3082 2065,22 0,8010
19R_RRBS 217343 400,46 44399 1938,82 0,7943 17842 4008,00 5,8443 13416 3045,87 3,8547 12842 3383,32 5,9205
19_RRBS 265825 468,59 56501 2182,79 0,9720 19713 5013,39 7,0185 14813 3353,04 4,3158 13639 3744,31 6,5372
20R_RRBS 49194 312,05 10607 1434,51 0,1801 7204 1816,68 1,3574 5015 1767,30 1,0239 5110 1909,11 1,5676
20_RRBS 12528 194,16 4669 515,85 0,0458 3143 652,97 0,3328 1562 917,81 0,2391 1409 1007,24 0,3198
21R_RRBS 128 79,10 65 154,58 0,0005 44 156,66 0,0028 17 266,65 0,0019 13 355,54 0,0027
21_RRBS 26017 378,72 7271 1342,36 0,0952 5222 1613,14 0,7294 3180 1689,07 0,5221 3204 1794,78 0,7834
22R_RRBS 27010 408,52 8462 1292,35 0,0988 5457 1601,13 0,7088 3241 1662,41 0,5123 2995 1782,44 0,7251
22_RRBS 16261 430,19 7634 902,52 0,0593 4401 1171,78 0,4026 1626 1448,89 0,2263 1388 1581,75 0,3133
24R_RRBS 279444 440,42 56248 2164,87 1,0214 19911 5044,10 7,5322 15216 3621,80 4,9451 13839 3903,21 7,2098
24_RRBS 400401 518,39 75191 2732,09 1,4635 22207 7578,81 10,7224 17712 4699,15 6,5458 16137 5344,45 9,9220

Mean sites num sites 
covgMean tiling num tiling 

covgMean
tiling num 
SitesMean

genes 
num

genes 
covgMean

genes num 
SitesMean

promoters 
num

promoters 
covgMean

promoters num 
SitesMean

cpgislands 
num

cpgislands 
covgMean

cpgislands 
numSites Mean

MEAN all 60169,48 366,07 16018,36 1116,71 0,2199 7763,59 1748,95 1,6101 4638,16 1660,04 1,0463 4401,55 1875,46 1,5718
Mean primary 61907,09 413,53 17316,36 1144,39 0,2262 7742,41 1864,51 1,6347 4383,64 1722,08 1,0058 4087,64 1973,19 1,5165

Mean recurrent 58431,86 318,62 14720,36 1089,03 0,2136 7784,77 1633,39 1,5855 4892,68 1598,00 1,0868 4715,45 1777,73 1,6270



 69 

Additional, 17 different promoters in genes associated with nucleic acid-templated 

transcription had hypermethylation in GBM1 compared to CG2 (mean p = 0.0079). In 18 

promoters associated with the regulation of different nucleobase-containing compound 

metabolic processes were hypermethylated (mean p = 0.0088). Moreover, there were 19 

hypermethylated hits associated with pathways of neuron morphogenesis and differentiation 

in GBM1 vs CG2 comparison. Pathways with promoter hypomethylation in GBM1 compared 

to CG2 included genes that are related to synapse organization and assembly, neuronal 

ensheathment and endothelial cell proliferation. 

The GBM2 vs CG2 comparison showed pathways with gene promoter hypermethylation 

associated with transcription regulation, cell adhesion and morphogenesis and embryonic 

development. Pathways which showed the most significant hypermethylation in promoters 

were associated with appendage morphogenesis and limb. Pathways with hypomethylated 

gene promoters in GBM2, compared to CG2, included a few associated with purine and 

pyrimidine nucleobase transports, Golgi transports and allantonin catabolic processes. 

Comparing GBM1 to GBM2, the GO analysis identified several pathways of biological 

relevance. Pathways with hypermethylation in the recurrent compared to the primary tumors 

included genes related to regulation of the Wnt pathway, catecholamine secretion and 

transport, and cellular response, signaling and communication. Pathways with promoter 

hypomethylation in the GBM2 compared to the GBM1 included genes related to both the 

innate and adaptive immune responses, cellular processes and cell differentiation. The most 

significant p values were noted in pathways linked to the regulation of lymphocyte-mediated 

immunity, natural killer (NK) cell-mediated cytotoxicity and regulation of cell killing. 

Figure 17. summarizes the potential mechanisms that play significant role in the GBM 

development and recurrence based on the results of the methylation analysis. 
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Figure 17. Mechanisms of GBM development and recurrence revealed by DNA CpG methylation. This figure 
provides a schematic depiction of molecular pathways and potential mechanisms contributing to GBM 
development and recurrence as revealed by RRBS of sequential GBM specimens [Kraboth et al., 2020]. 

Enrichment analysis 

The LOLA program was run to enrich for genomic region sets and regulatory elements 

relevant to the interpretation of functional epigenomics data [Sheffield and Bock, 2016]. 

Results of the top-ranking 1000 hypomethylated tiling regions were used. In both the CG2 vs 

GBM1/GBM2 comparisons, strong enrichment was identified in hypomethylated regions in 

the tumors for binding sites of transcription factors and histone proteins relevant to proper 

embryonic stem cell differentiation and lineage fidelity maintenance. In the GBM1 vs GBM2 

comparison, GBM2 group showed enrichment in binding sites for transcription factors and 

histone proteins among the hypomethylated regions. 
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Cross-platform validation 

Because the lack of available GBM dataset array-based DNA CpG methylation data of 

matched GBM samples (n = 12 pairs) from The Cancer Genome Atlas (TCGA) 

[https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga] 

was downloaded and used in a cross-platform analysis thanks to the RnBeads tool [Müller et 

al., 2019]. The results of the analysis revealed that promoters in genes of pathways involved 

in embryonic development, immune regulation and Wnt signaling were less methylated in the 

TCGA GBM samples than in the CG2 controls. The results of the second analysis showed less 

methylated promoters in genes of pathways involved in stem cell proliferation and cell 

dedifferentiation, intracellular regulatory and metabolic processes, negative regulation of 

apoptosis, cell adhesion and T cell polarity as well as migration in the TCGA recurrent 

compared to the primary samples. In contrast, promoters of genes in pathways involved in 

endothelial cell proliferation, negative regulation of the execution phase of apoptosis, T cell 

proliferation, cell–cell signaling, neuronal differentiation, and regulation of G protein- 

mediated signaling (including neurotransmitter, catecholamine and some Wnt receptor 

signaling, though with lower ranking in the list) were less methylated in the TCGA primary than 

in the recurrent samples. 

Considering the technical limitations and interpretive difficulties when comparing data 

from various platforms and results from small cohorts, the outcome of the TCGA sample 

analyses is supporting the previously mentioned conclusions. 

Correlation on clinical data 

No association was detected between T1–T2 and gender or the age of patients, or T1–

T2 and morphological subtype, mitotic rate, microvascular proliferation or necrosis of the 

tumors. However, a trend for association was found between T1–T2 and the amount of tumor 

infiltrating lymphocytes (TIL) in the GBM1 samples (Kruskal–Wallis test p = 0.08), but not in 

the GBM2 samples (p = 0.737). Neither Mann–Whitney nor Pearson’s correlation analysis 

showed a link between TIL and mitotic rate. 
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miRNome profiling 

CASE STUDY IV.: NSCLC 

Data quality control 

Quality control is a crucial step in the analysis to assess the overall quality of the samples, 

to see how well the replicates correlate with each other and to identify possible outliers. Here, 

quality control results of the “classification” dataset (Set 1; AC, n = 26; AC_c, n = 25; SCC, n = 

30; SCC_c, n = 28, including matched control samples) will be introduced. Overall, more than 

1600 miRNA were identified out of 2571 in the entire dataset. Elements with extreme low or 

0 abundance were filtered out. 

Between sample correlation values describe the similarity between the samples in a 

general level, when all measurement features of all samples are taken into consideration. In 

this analysis the so-called Spearman’s metrics is used which describes the between sample 

similarity on a scale of 0-1. Value 0 means perfect uncorrelation between the samples whereas 

value 1 means perfect correlation between them (Figure 18., Table 14). 

GroupName minCor meanCor medianCor maxCor corSD 

SCC 0.692 0.795 0.802 0.843 0.029 

SCC_c 0.761 0.822 0.825 0.865 0.02 

AC 0.703 0.791 0.795 0.837 0.024 

AC_c 0.805 0.836 0.837 0.863 0.011 

Table 14. Correlation values. AC_c control samples of AC group, SCC_c control samples of SCC group. 
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Figure 18. Correlation plot of the test “classification” dataset. Colours from orange to green indicating the 
correlation values (0.65-1) 

Based on the analysis result the mean correlation for the AC and SCC samples (including 

control ones) are a little bit below the expectation (mean = 0.81). Considering the nature of 

the human dataset the overall correlation rates were good and only there are just a few 

possible outliers. These samples (e.g., S87 and S93) are noticeable on Figure 18. with a lot of 

darker orange squares compare to rest of the plot. 

Next, in hierarchical clustering the samples are grouped according to their general 

similarity when all the measurements of all the samples are taken into consideration. Here, 

the samples were clustered with Euclidean metrics. The result of the cluster analysis can be 

visualized as a dendrogram, which is an out-branching graph where the most similar samples 

(in other words best correlating) can be found in the branches that are nearest to one another. 
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Dendrograms produced by cluster analysis for reads mapped to miRNA features are shown on 

the Figure 19. below. 

 
Figure 19. Hierarchical clustering results for AC and SCC samples. 

The control samples are grouped in one big subcluster but with higher variation within the 

cluster, means the separation is not that clear for the AC_c and SCC_c samples. Rest of the 

tumor samples are in separate clusters on the two side of the dendrogram. Also, the 

previously mentioned possible outlier samples are alone in different branches, specially S93 

(top left of the dendrogram). 

 
Figure 20. PCA plot for results of AC and SCC samples. 
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The sample relations can also be studied by the means of a principal component analysis 

(PCA) which is an ordination technique complementary to clustering. Ordination orders 

objects so that similar objects are placed near each other, and dissimilar objects are placed 

further from each other. In PCA analysis the sample relationships can be visualized in three-

dimensional space (Figure 20.). The rotation angle is important because the plot itself and 

interpretation could be different. Based on patters on the PCA plot, from the actual rotation 

angle (240°), the control and tumor samples from the AC group are forming two separate 

clusters (green and orange dots). This is true for the SCC group as well (blue and red dots). 

Again, the possible outlier samplers are clearly visible. However, there is an overlap in the 

opposite direction between the groups than expected orientation. On the plot AC_c + SCC and 

AC + SCC_c dots are overlapping but we expected that the control sample will overlap. This 

attribute could be explained by the rotation angle and the higher variability within the real 

human dataset. 

Differential expression analysis 

Three different group comparisons (AC vs AC_c; SCC vs SCC_c; AC vs SCC) were carried 

out to get more information about the molecular background of NSCLC. When filtering up- 

and down-regulated (i.e., differentially expressed = DE) miRNAs between certain conditions 

(groups) fold changes and corrected p-values calculated during statistical testing were used as 

filtering criteria. All the measured miRNAs are filtered to list those that show the strongest 

evidence for being differentially expressed between the compared groups. 

Fold change (FC) describes the size of the difference in gene expression between the 

compared groups. It is the results from linear modelling process performed with Limma 

package. Fold changes are often expressed as log2-transformed, where value 0 means ‘no 

change’ and 1 means doubled value and -1 means halved value. The values are always in 

relation to the group used as a base level group (reference or control). 

The choice of the thresholds for p-value and fold change used for filtering the 

differentially expressed (DE) genes is not a trivial task. There is no one correct way or method 

to determine the thresholds, but the choice is based on various aspects of each study and 

comparisons. Different thresholds can also be used for filtering the data for different 

purposes. For example, often strict thresholds are chosen when the data is filtered to be 

included in a publication. Then the result list will contain very few false positive findings but 
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on the other hand many true positives are left outside the result set. Because of this, it is 

typically useful to use less stringent thresholds for filtering data for internal research purposes 

or functional analysis when a larger proportion of possible false positive findings can be 

tolerated. Table 15 shows the used filtering criteria and the number of identified up- and 

down-regulated DE miRNAs in details for each comparison. 

Comparison FC logFC PType P Total Up Down 

AC_vs_AC_c 1.5 0.58 adj.P.Val 0.05 162 83 79 

SCC_vs_SCC_c 1.5 0.58 adj.P.Val 0.05 232 138 94 

AC_vs_SCC 1.3 0.38 adj.P.Val 0.05 31 4 27 

Table 15. Filtering parameters and the number of DE elements. 

A total number of 162, 232 and 31 DE miRNAs were identified from the AC vs AC_c, SCC vs 

SCC_c and AC vs SCC (tumor only) comparisons, respectively. The top 10 most significant 

elements based on average ranking value (based on both p value and fold change) are listed 

in Table 16. 

AC vs AC_c SCC vs SCC_c AC vs SCC 

hsa-miR-490-3p hsa-miR-451a hsa-miR-944 

hsa-miR-144-3p hsa-miR-144-3p hsa-miR-205-5p 

hsa-miR-451a hsa-miR-4652-5p hsa-miR-383-5p 

hsa-miR-144-5p hsa-miR-7974 hsa-miR-3927-3p 

hsa-miR-9-5p hsa-miR-486-5p hsa-miR-448 

hsa-miR-9-3p hsa-miR-30a-3p hsa-miR-3617-5p 

hsa-miR-451b hsa-miR-144-5p hsa-miR-1911-5p 

hsa-miR-30a-3p hsa-miR-135a-5p hsa-miR-1224-5p 

hsa-miR-486-5p hsa-miR-3180-3p hsa-miR-205-3p 

hsa-miR-196a-5p hsa-miR-3180 hsa-miR-6510-3p 

Table 16. Top 10 significant miRNAs based on average ranking. 

The following Figure 21. show the results of the comparisons as Volcano plots. In a volcano 

plot the log10 of the p-values is on the y axis and the logFC calculated for the comparison 

group vs. base level group is on the x axis. In this plot it can be seen how the reliability values 

of the measurement features behave in relation to the fold change. 



 77 

 
Figure 21. Volcano plots. The thresholds used in the filtering are marked in the plot with dashed lines, up-
regulated genes are coloured red and down-regulated green. 

There was a significant overlap between certain group comparisons. The “AC vs AC_c“ 

and “SCC vs SCC_c” dataset shares all together 121 miRNAs (Figure 22). The “The AC vs AC_c“ 

and “SCC vs SCC_c“ have 111 and 41 unique elements respectively for each group. In contrast 

with that, the “AC vs SCC” results share only one miRNA with “AC vs AC_c” and 16 miRNAs 

with “SCC vs SCC_c” out of 31 (data not shown). 
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Figure 22. Shared DE miRNAs between the “AC vs AC_c“ and “SCC vs SCC_c” dataset. Orange bars indicating the 
total number of DE elements, dark grey bars representing the number of unique and shared elements. 

Cluster analysis of the filtered genes can also be used as a means for choosing the 

filtering thresholds. Such thresholds should be chosen, that the samples are grouping 

according to the known sample groups in the cluster analysis of the filtered genes. The result 

could be visualized on specific heatmaps. Figure 23. shows the heatmap clustering of the 

differentially expressed features for the comparisons. Pearson’s metrics has been used in 

hierarchical clustering of the samples and filtered features. The clustering is based on the 

general expression measurement similarity. In the plot red colour means high expression and 

blue low expression. Each row represents one DE feature, and each column represents one 

sample. For “AC vs AC_c“ and “SCC vs SCC_c” comparisons the sample separation is perfect, 

means the select thresholds were good and maybe more strict parameters could be applied. 

For the last analysis (Ac vs SCC) sample clustering and group separation is not that clear, 

compared to previous results, but still acceptable. These findings indicating that, the two 

groups are a little bit similar and the DE miRNAs not explaining enough variability.
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Figure 23. Heatmaps for all comparisons.  
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Enrichment analysis 

The online available mirPath v.3 from DIANA tools was used to carry out enrichment 

analysis for KEGG pathways based on the miRNAs target gene results. Some of the miRNAs 

were excluded from the analysis because they were not included in the database. For “AC vs 

AC_c“ and “SCC vs SCC_c” comparisons analysis was done separately for the up- and down-

regulated miRNAs. For “AC vs SCC” all elements were used in one search. Overall, 52, 180 and 

81 unique pathways were significantly affected (corrected p-value £ 0.01) in “AC vs AC_c“, 

“SCC vs SCC_c” and “AC vs SCC” comparisons, respectively. Most of the pathways are related 

to cancer or potentially connected with the disease development. Table 17. shows the top 10 

pathways from each comparison. The DIANA algorithm can cluster together microRNAs 

targeting similar lists of pathways, as well as pathways, which are targeted by similar lists of 

microRNAs (Targeted Pathways Clusters) or take also into account the significance levels of 

the interactions (Significance Clusters) during the clustering process. This is especially useful 

during the interpretation phase. Figure 24. Represent the result of the clustering for all 

comparisons. 

AC vs AC_c UP AC vs AC_c DOWN SCC vs SCC UP SCC vs SCC DOWN AC vs SCC 
ECM-receptor 

interaction Prion diseases Phenylalanine 
metabolism Prion diseases ErbB signaling 

pathway 
Transcriptional 

misregulation in 
cancer 

Ubiquitin mediated 
proteolysis Sulfur relay system Fatty acid 

biosynthesis Endocytosis 

PI3K-Akt signaling 
pathway 

Dopaminergic 
synapse Retinol metabolism MAPK signaling 

pathway Prostate cancer 

TGF-beta signaling 
pathway Axon guidance Synaptic vesicle 

cycle 
Ubiquitin mediated 

proteolysis 
Wnt signaling 

pathway 
Neurotrophin 

signaling pathway 
Wnt signaling 

pathway 
Morphine 
addiction 

Dopaminergic 
synapse 

Chronic myeloid 
leukemia 

Regulation of actin 
cytoskeleton Prostate cancer Pancreatic 

secretion Axon guidance MAPK signaling 
pathway 

Prostate cancer Long-term 
potentiation Lysine degradation Long-term 

potentiation Axon guidance 

Gap junction Neurotrophin 
signaling pathway 

Calcium signaling 
pathway Prostate cancer Endometrial cancer 

mTOR signaling 
pathway 

TGF-beta signaling 
pathway 

Regulation of actin 
cytoskeleton 

PI3K-Akt signaling 
pathway 

PI3K-Akt signaling 
pathway 

ErbB signaling 
pathway 

MAPK signaling 
pathway 

Hematopoietic cell 
lineage 

Wnt signaling 
pathway 

Long-term 
potentiation 

Table 17. Top 10 significant KEGG pathways
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Figure 24. Targeted Pathways Clusters for the following comparisons: (a) AC vs AC_c UP; (b) AC vs AC_c DOWN; 
(c) SCC vs SCC_c UP; (d) SCC vs SCC_c DOWN; (e) AC vs SCC

(e) 
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One miRNA could target several genes and several miRNAs could target the same gene. 

Due to this fact and the high number of shared DE miRNAs between the comparisons there is 

a huge overlap between the results of the enrichment analyses (Figure 25.). There are 88 

unique KEGG pathways that could be find in “SCC vs SCC_c” upregulated dataset. Also, the 

overlap is compelling between the “SCC vs SCC_c” and “AC vs SCC” groups (n = 37) and there 

are additional 24 pathways that is shared across all datasets. In the rest of the comparisons 

only 2 – 6 pathways are shred. Pathways that were affected both in the up- or down-regulated 

miRNA set within the same histological group should be removed from the results because it 

is difficult to predict which effect will prevail. 

 
Figure 25. Number of shared KEGG pathways. Black dots marking the actual group and if there is a common 
element dots are connected 
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Development of the predictive model 

Using the CAMPP toolset first 10 miRNAs were selected randomly to check the data 

distribution (Figure 26.) According to all data checks the input was normally distributed and 

good for further processing. 

 
Figure 26. Data distributional check for randomly selected hsa_miR_138_5p miRNA from the dataset. 

Overall, 17 miRNAs were identified as possible biomarkers (e.g., hsa_miR_1287_5p, 

hsa_miR_147b, hsa_miR_149_5p, hsa_miR_205_3p, hsa_miR_205_5p, hsa_miR_30b_5p, 

hsa_miR_326, hsa_miR_375, hsa_miR_450a_1_3p, hsa_miR_450a_5p, hsa_miR_4728_3p", 

hsa_miR_542_3p, hsa_miR_556_5p, hsa_miR_6510_3p, hsa_miR_653_3p, hsa_miR_7705, 

and hsa_miR_944). Multidimensional Scaling Plot (MDS) shows the separation of AC and SCC 

tumor samples based on miRNAs abundances (Figure 27). The components M1 and M2 in the 

plot below are those which best retained the distance relationship between samples in two 

dimensions. Based on these finding the groups separation is quite good, however the border 

is not that clear. 
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Figure 27. Multidimensional Scaling Plot. 

In order to confirm the reliability of the identified histotypic-associated miRNAs, 

decision tree based classification model was built using 17 miRNAs. The fitted model was used 

for prediction in the blood dataset. The prediction accuracy was 96% in the training (tissue) 

and 74% in the test (blood) datasets, respectively. As expected, the model performs well on 

the training dataset. At the same time the model underachieves on blood data. The reason 

behind this that the abundance levels of the miRNAs in tissue and blood dataset are more 

different. For example, some of the miRNAs that are highly expressed in tissue they may not 

appear in the blood, or it is hard to sequence them. Therefore, the model needs further 

optimization, and the datasets need cleaning and scaling, focusing on the protentional huge 

differences in the abundances. 
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Assisted reproduction 

CASE STUDY V.: NIPGT-A 

NGS and data analysis 

In prior to better understand the analysis outcome raw data and mapping QC results 

have been carefully investigated. After the successful WGA of 28 samples out of 40, the 

sequencing resulted in an average 12M SE50 reads per sample. Based on the QC analysis result 

(Figure 28a.) the dataset had high-quality sequences (as usually Illumina datasets). The 

sequence duplication level was generally low for a few samples but for rest of the cohort it 

was a little bit higher, but still acceptable, as depicted in yellow on Figure 28b. These marked 

samples were part of the control and the culture media droplets of healthy neonate groups. 

A similar trend could be observed in the GC content analysis (Figure 28c), where results are 

compared to a modelled normal distribution of 50% GC content (green line). The low 

sequencing coverage and the WGA method could cause these unusual patterns in the 

distribution. Finally, the adapter contamination showed the expected level considering the 

sample qualities and applied methods (Figure 28d.). 

 

Figure 28. Representing plots from the raw data quality checking process with the following subfigures: (a) 
Sequence quality histogram, (b) Sequence duplication level, (c) Per sequence GC content, (d) Adapter content 
[Gombos et al., 2021]. 
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After filtered reads were aligned to the reference genome mapping quality metrics were 

checked (Figure 29.). Samples, that showed good results were selected (n = 22) for further 

analysis (Table 18.). On average, 6.55% of the genome had at least 1x coverage and 0.5% had 

at least 5x coverage across all the samples (Figure 29a,b). 

 

Figure 29. Representing plots from the analysis of mapping quality metrics of the selected samples. The 
subfigures represent the following results: (a) Coverage histogram showing the genomics bin counts with the 
corresponding coverage, (Cumulative coverage genome fractions showing the fraction (%) of the genome which 
has at least “X” coverage, (c) GC content distribution of the mapped reads where the dashed lines correspond to 
the theoretical distribution [Gombos et al., 2021]. 

Majority of the reference had coverage between 0–1x for all samples. According to the 

GC distribution of the mapped reads samples could be split into two groups (Figure 29c). The 

first group consisted of only the two samples that were taken from cord blood with mean GC: 

40%. This value is close to the pre-calculated GC distribution for the reference genome (Figure 

29c) marked with dashed line. These samples were used as controls with known CNVs for data 

analysis optimization and had extremely good quality thanks to the sample nature compared 

to the droplets. The remaining samples clustered into the second group and had an average 

of 49% mean GC content, which is slightly higher than the expected mean value. Repeatedly 

the low sequencing coverage, the original DNA quality and the WGA is the cause of the bizarre 

shape. Since DNA was fragmented in the culture medium and the fragments origins were not 

uniformly distributed compared to the DNA that have been isolated from pure tissue or a 
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small number of cells. The lower mapping percentages in the control culture media samples 

(35–44%) and the ratio of genomic regions that have at least 1x coverage compared to the 

other samples are supporting the fact there is a known DNA contamination source from HSA 

that were added to the culture media. This background contamination could cause difficulties 

in the downstream analysis. 

Sample Name group Avg. 
GC ≥ 1X ≥ 5X Median 

coverage 
% 

Aligned 

G1_plus_HSA1 c 49% 0.9% 0.3% 0.0X 40.9% 

G1_plus_HSA2 c 49% 0.5% 0.2% 0.0X 39.7% 

G1_plus_HSA4 c 47% 0.8% 0.2% 0.0X 35.1% 

G1_plus_HSA5 c 48% 0.7% 0.3% 0.0X 36.2% 

G1_plus_HSA6 c 48% 0.8% 0.3% 0.0X 44.2% 

7567_1A 0 50% 10.6% 0.4% 0.0X 91.9% 

7567_1B 0 48% 4.0% 1.1% 0.0X 76.0% 

7010_1A 0 49% 1.4% 0.4% 0.0X 41.7% 

7010_1B 0 50% 12.6% 0.4% 0.0X 96.2% 

7301_1A 0 50% 11.9% 0.4% 0.0X 95.2% 

7301_1B 0 50% 5.0% 1.0% 0.0X 84.7% 

7316_1A 0 49% 6.1% 1.0% 0.0X 86.4% 

7316_1B 0 50% 9.9% 0.3% 0.0X 95.7% 

7370_1B 0 50% 7.5% 0.9% 0.0X 87.4% 

6341_4B 1 49% 1.5% 0.4% 0.0X 40.4% 

6341_4C 1 50% 2.4% 0.5% 0.0X 47.9% 

7793_1A 1 49% 5.7% 1.3% 0.0X 83.1% 

7793_1B 1 50% 7.8% 1.1% 0.0X 87.8% 

7938_1A 1 50% 8.1% 1.1% 0.0X 88.8% 

7938_1C 1 49% 9.9% 1.1% 0.0X 92.2% 

A7Down 2 44% 17.8% 0.0% 0.0X 98.0% 

A8Down 2 44% 21.1% 0.0% 0.0X 98.0% 

Table 18. Mapping quality metrics of the selected control media samples (c.), culture media droplets from 
embryos of miscarriage (0), culture media droplets of healthy neonates (1), cord blood sample with known CNVs 
(2) [Gombos et al., 2021]. 
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CNV analysis and Statistical testing 

The number of read counts served as the basis of CNV analysis. Reads were counted and 

visualized almost all along on the genome (telomer and centromere regions were excluded 

from the analysis) in 1 Mb bin size because of the low sequencing coverage. The Cn.MOPS 

algorithm [Klambauer et al., 2012] was used to identify chromosomal alterations in the 

samples. Odds ratios (OR) were calculated in two different ways, between missed, healthy and 

control media groups, respectively. In the first case (v1) overall CNV occurrence was counted 

as one main simple event on a chromosome to reduce the bias caused by the false positives. 

In the second case (v2) every single CNV was counted separately on a chromosome. Both OR 

calculation methods confirmed statistically significant differences between the culture media 

droplets of aborted embryos (marked as “Missed”) and the control media (marked as 

“Media”) (Figure 30.). In contrast, results did not show significant difference between the SCM 

droplets of healthy neonates (“Healthy”) and the control media (“Media”) group. The gDNA 

features, like fragmentation and quality, of the healthy and culture media groups were very 

similar and clinically relevant CNVs could not be identified could explain the results. Also, this 

is supported by the difference in the embryonic gDNA content and quality found in the SCM 

droplets of the cleavage-stage embryos that developed to healthy neonates compared to the 

group of embryos that were aborted. The explanation of these observations comes from the 

fact that the culture media of the “Healthy” embryos mostly contains only fragmented gDNA 

which particularly comes from HSA. Most likely there is some gDNA from the embryo as well, 

but it is hard to separate the HSA and embryonic sequences even with bioinformatic 

approaches. Other reason is that the WGA efficiency is lower when the gDNA is very 

fragmented and short fragments are discarded during the sample preparation. In contrast 

with that the SCM of “Missed” embryos may contain more gDNA mainly form the dead cells 

of the embryo. These DNA is less fragmented, and the WGA works better on it. Therefore, 

evaluable results could be predicted only from the missed aborted group. 
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Figure 30. Odds ratio analysis for CNV in culture media droplets of aborted embryos (Missed) compared to 
control media and culture media droplets of healthy neonates (Healthy) compared to control media. Odds 
ratios are in log transformed scale for better visualization [Gombos et al., 2021]. 

Further annotation of the predicted CNVs using UNIQUE database 

[https://www.rarechromo.org, 31 December 2020], Genetic Alliance database 

[https://www.geneticalliance.org.uk, 31 December 2020] and CDO database 

[https://chromodisorder.org, 31 December 2020] revealed 17 relevant chromosomal 

alterations. All of these occurred only in the aborted embryo group and were related to 

registered chromosomal alterations and major developmental impairments. Table 19. lists all 

the identified CNVs and Figure 31. displays the variations on a karyogram (marked with blue 

lines). Clinically significant CNVs were could not be predicted in two of the SCMs from the 

aborted embryos. The remaining 9 SCM samples were positive for multiple chromosomal 

abnormalities. 

In particular, analysis of DNA profiles of Day 3 spent media demonstrated that higher 

gDNA copy number is associated with impaired intrauterine development and indicated 

miscarriage outcomes, while low gDNA of embryonic origin in the culture medium was found 

to be characteristic of healthy pregnancy and live birth. 
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Figure 31. Karyogram representing clinically relevant autosomal alterations identified based on the NGS analysis 
of the gDNA content from the culture media of the 9 aborted embryos. Dark red bands showing the centromeres, 
green bands above the chromosomes are indicating gains and dark blue bands are showing losses [Gombos et 
al., 2021]. 
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Chromosomal 
location 

Type of 
alteration Function 

2q35 deletion XRCC5 gene inactivation- defect in DNA repair function 

2q37 2,3-2,4 mb 
deletion IGFBP2 inactivation 

3p25.3-p25.1 deletion miR-885 inactivation, impaired differentiation 

4p16.3-p16.1 duplication 
CNV identified with chromosomal microarray in individuals 

with developmental disabilities or congenital 
anomalies (ISCA) 

8q24.3 duplication MYC proto-oncogene gene desert in GWAS (Genome Wide 
Association Studies) studies 

9p12-p11.2 deletion ANKRD20A3 gene inactivation syndromic hydrocephalus due 
to diffuse hyperplasia of choroid plexus, glioma 

10q22.1 duplication COLl13A1 frameshift with pathogenic interpretation (ClinVar) 

11q23.1-23.3 duplication Beckwith-Wiedemann syndrome 

14q31.1-q31.3 deletion autosomal dominant disorder (HPPD)involving hypertelorism 
and deafness 

14q32.2-q32.33 deletion FOXG1 inactivation, impaired development and structural 
brain abnormalities 

15q13.3 deletion MTMR10, FAN1 frameshift associated with karyomegalic 
interstitial nephritis 

16q23.3-24.3 duplication APRT, FOXC2 indel, adenine phosphoribosyl transferase 
deficiency, disichtiasis lympoedema syndrome 

17q22-p23.2 deletion Ateleiotic dwarfism, isolated growth hormone deficiency 

20p12.2-p12.1 deletion JAG1 related Alagille syndrome 

20q13.31-q13.33 duplication PKC1, phosphoenolpyruvate carboxikinase deficiency 

21q22.3 duplication RIPK4, PCNT popliteal pterygum syndrome, lethal type 

21p13-p11.2 deletion short arm loss monosomy 

22q13.2-13.31 duplication SCO2 cardioencephalomyopathy due to cytochrome c 
oxidase deficiency, fatal 

Table 19. Chromosomal alterations found in missed aborted embryos and listed in human genetic databases 
(UNIQUE, Genetic Alliance and CDO) [Gombos et al., 2021]. 
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Discussion 

Bioinformatics 

The pipeline development was easy and relatively fast using the Nextflow workflow 

management environment, but it requires basic programming skills. The introduced NGS data 

processing pipelines contains similar steps (e.g., quality control, trimming, filtering, adapter 

removing, aligning and mapping statistics) some of the steps or parts could be used as 

scaffolds in other workflows, thereby speeding up the future pipeline implementation. One of 

the useful features of Nextflow is that failed runs, after fixing the error, could be continue 

from certain step. This is particularly important during pipeline building and in the test phases, 

also sample specific errors could occur while real data analysis. Therefore, we do not have to 

start from the beginning, and we could save some time. Running such pipeline need less 

hands-on time and people with less bioinformatic experience could run it too. Since, the 

designed workflow is sticked to certain tools and input files with dedicated version results will 

be reproducible if reanalysis is needed. Another key specification of Nextflow is its integration 

with software repositories (e.g., GitHub or BitBucket) and its native support for cloud systems. 

Again, some of the practical implications of this integration are relevant to computational 

reproducibility. The impact of GitHub has been recently highlighted as a driving force behind 

data sharing [Perkel, 2016]. 

Somatic mutation profiling 

CASE STUDY I.: CLL 

Ibrutinib has changed the CLL therapy by inducing strong responses in patients with 

previously relapsed/refractory disease as well as in high-risk patients harbouring TP53 

aberrations [Ahn et al., 2018]. Nonetheless, the consequences of subclonal changes occurring 

under the selective pressure during the treatment have not been completely investigated so 

far. Applying targeted deep NGS analysis of real-world patient cohort treated with ibrutinib 

helped to reveal the dynamics of clonal selection emerging on the ground of a profound 

subclonal heterogeneity. Also, commonly conferring convergent evolution was observed in 

most patients. The clonal landscape revealed that all individual cases were characterized by 
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unique combinations of mutations as well as different patterns of clonal variegation upon the 

selective pressure caused by ibrutinib. In contrast with that no mutations were found in the 

main driver genes that are involved in pathogenesis of CLL. This fact supporting the selective 

fitness in patients to ibrutinib. 

This case study and some of the most recent data in the literature suggest that 

comprehensive deep sequencing of cancer driver genes may have clinical benefit in the future. 

In addition, genomic profiling of various sites (e.g., peripheral blood, bone marrow and lymph 

nodes) that provide distinct microenvironments for parallel clonal evolution, should be 

considered to achieve a more precise characterization of CLL in individual patients [Kiss et al., 

2018]. 

CASE STUDY II.: PCNSL 

The treatment of PCNSL patients is still challenging [Grommes et al., 2019], with 

considerably worse outcomes compared to nodal DLBCLs, indicating the need for novel 

biomarkers and therapies. Precise classification of individual cases into the proper ABC or GCB 

molecular subgroup was described by Alizadeh et al., 2000, complemented with the mutation 

profiling of target genes may help to develop a more effective patient stratification method 

and new strategies for personalized therapies [Coutinho et al., 2013, Karmali et al., 2017]. 

Recently, the NanoString LST-assay emerged as one of the most reliable and highly 

reproducible approach to classify the subtypes from FFPE material. It was successfully 

demonstrated on a large cohort of DLBCLs [Scott et al., 2014] but not used in routine 

application. 

In this PCNSL case study the NanoString LST-assay was successfully applied for the for 

molecular subtyping of samples from a large cohort of patients with brain lymphoma. Applying 

this molecular subtyping method revealed a higher proportion of cases with a GCB subtype 

compared to the traditional IHC analysis (13% vs 5%). 

The genomic profile of PCNSL has only been analysed recently, using various NGS 

technologies. These studies included only smaller patient cohorts the results revealed a similar 

mutational burden and profile to nodal DLBCLs, with predominant mutations of the 

BCR/NFKB pathway [Braggio et al., 2015; Bruno et al., 2014; Chapuy et al., 2016; Fukumura et 

al., 2016; Nakamura et al., 2016; Vater et al. 2015; Zhou et al., 2018]. Here, a targeted genomic 

profiling of 14 genes was carried out in a relatively big cohort (PCNSL = 64, SCNSL = 12), 
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focusing on genes with potential prognostic impact. In both brain lymphoma cohorts, the most 

frequently mutated genes were MYD88, PIM1, KMT2D and PRDM1, followed by IRF4, MYC 

and CD79B. Mutation frequencies of the individual genes observed in this study are in line 

with already published results but with a wider range of frequencies [Braggio et al., 2015; 

Bruno et al., 2014; Chapuy et al., 2016; Courts et al., 2008; Fukumura et al., 2016; Gonzalez-

Aguilar et al., 2012; Nakamura et al., 2016; Vater et al. 2015; Zheng et al., 2017; Zhou et al., 

2018]. This can be explained by the heterogeneity in the type and depth of the used 

sequencing methods, type of the analysed material and the difference between the applied 

bioinformatics pipelines. In this study the dual-strand approach was utilized additionally to 

increase the sensitivity and accuracy of variant detection from FFPE samples. Comparing the 

mutation frequencies between the GCB and ABC subtypes defined by the LST-assay, the 

mutation patterns observed in PCNSL (as well as SCNSL) do not follow the ones documented 

earlier in nodal DLBCLs [Davis et al., 2010; Dubois et al., 2017; Kraan et al., 2013; Kuo et al., 

2016]. Some of the CD79B, CARD11, CSMD2 and CSMD3 were exclusively detected in ABC. 

Statistical analysis did not reveal significance differences in mutation frequencies (e.g., 

MYD88, PIM1 and KMT2D) between the GCB and ABC groups. This may support the hypothesis 

that PCNSL represents a distinct clinical entity irrespective of the cell of origin classification as 

proposed by Fukumura et al., 2016. 

Considering the collected knowledge about the genomic complexity of PCNSL in the GCB 

and ABC patient groups, precise assignment of molecular subtypes using routinely available 

FFPE tissues and complementary mutation analysis of the actionable mutation targets will 

most likely support and drive personalized therapeutic decisions during the management of 

the disease. 

DNA methylation profiling 

CASE STUDY III.: GBM 

In this study, the main goal was to identify molecular drivers and pathways that are 

essential for GBM development and recurrence from a different perspective. Therefore, the 

genome-wide DNA CpG methylation patterns were analysed to infer the expression of genes 

defining the most critical pathways in the GBM cohort. Based on the quality assessment 

results DNA specimens from surgically removed FFPE samples were significantly more 
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fragmented than that of freshly obtained blood samples but worked well in RRBS. The CG2 

included DNA CpG methylomes of five brain specimens obtained during epilepsy surgery 

[Klughammer et al., 2018]. The DNA controls from the small and heterogeneous populations 

of all normal and some degenerative cell types of adult brains may not be perfect for the 

methylome from transformed glial tumor cells of GBM. As no ideal control tissue is available 

for human GBM, control brain methylomes that have been successfully applied in a similar 

epigenomic analysis [Klughammer et al. 2018] was selected for the analysis. 

A shift toward global DNA hypomethylation was observed when comparing CG2, GBM1 

and GBM2, these findings are in line with already published results [Brothman et al., 2005; 

Ehrlich 2009; Feinberg et al., 1988; Hansen et al., 2011; Makos et al., 1992; Nagarajan et al., 

2014]. Comparisons of differential methylation data at site and region levels revealed no 

significant results in any of the three pairwise comparisons but the GO analyses highlighted 

several pathways with biological relevance. 

In the comparison of GBM1 vs. CG2 significant hypomethylation was found, possibly 

activation in the following pathways like synapse formation and myelination, positive 

regulation of endothelial cell proliferation, a factor contributing to angioneogenesis, which 

promoting GBM growth [Ameratunga et al., 2018; Etcheverry et al., 2010; Fisher et al., 2005; 

Roth et al., 2020]. In the same GBM1 vs CG2 comparison hypermethylation (repression) was 

identified in pathways related to related to neuronal differentiation, nucleic acid-templated 

transcription and different nucleobase containing metabolic processes, which affect multiple 

genes whose abnormal function may modify cell function and define subtype formation 

[Cuperlovic-Culf et al. 2012; Marziali et al. 2016]. These findings reflect a disturbed balance in 

elements of a normal neuronal differentiation underlying the distorted patterns which was 

observed by other investigators as well in cancer stem cells (CSCs) and GBM [Etcheverry et al., 

2010; Silvestris et al., 2019]. 

Comparing differential promoter methylation in GBM2 vs CG2, the hypomethylated 

pathways were primarily related to intracellular function and transport, offering new targets 

for experimental intervention [Fallacara et al., 2019]. The hypermethylated pathways included 

transcriptional regulation, cell adhesion and embryonic development, which may also 

contribute to a distortion of normal neuronal differentiation and abnormal proliferation of 

pluripotent neuroepithelial cells, thereby defining progression of GBM [Bradshaw et al., 

2016a, b; Etcheverry et al., 2010]. 
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The comparison in GBM2 vs GBM1 identified several changes involving essential cellular 

functions that may contribute to GBM development. Higher gene expression and activity were 

inferred from the lower methylation of elements essential in cell response, signaling and 

communication in GBM1 than in GBM2. Elements of the canonical Wnt signaling pathway, 

particularly those regulating endothelial cell migration, cell adhesion or wound healing also 

appeared more active in GBM1 compared to GBM2. 

The above-mentioned results are overlapping with results described in other 

publications [Anastas and Moon 2013; Etcheverry et al., 2010; Hu et al., 2016; Klughammer et 

al., 2018; Lamb et al., 2013; Mazieres et al., 2005; Tompa et al., 2018] and was supported by 

comparing the array-based DNA CpG methylation data of TCGA GBMs to the sequence-based 

methylomes of CG2 controls [Klughammer et al., 2018], and the sample pairs of the array-

based methylation data to each other (REF) as well. The weaknesses of the analyses are the 

heterogeneous tumor biology, differences in cohorts’ sizes, distributions of patients’ age, 

gender and ethnic background, and the reduced representation of methylome itself. Apart 

from these differences these methylome analyses revealed important molecular pathways 

and mechanisms contributing to the occurrence and progression of GBM. 

miRNome profiling 

CASE STUDY IV.: NSCLC 

Several recent studies showed that profiling miRNA expression could be exploited for 

both histological and prognostic characterization (classification) of NSCLC [Hua et al., 2022; 

Liang et al., 2022; Yan et al., 2022]. In the current study, NGS-based technology was used in 

order to discover miRNA expression differences among lung cancer histologies and identify 

possible biomarker as well. 

Our study of global miRNA expression profiling in lung cancer allowed for identification 

of set of miRNAs of which expression profiles differed significantly between AC and SCC and 

control samples. Overall, it was demonstrated that 138 miRNAs were significantly 

overexpressed in SCC while 83 miRNAs were found overexpressed in AC samples. Majority of 

these differentially expressed miRNAs were also identified in other studies [Joshi et al., 2014; 

Wani et la., 2022]. Landi and colleagues [Landi et al., 2014] in the unadjusted analysis 
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demonstrated the expression profile of 127 miRNAs which were significantly and consistently 

different between lung AC and SCC patients. 

Altogether, our and other studies demonstrated that specific miRNAs can be 

considered molecular drivers determining the histology of NSCLC. The patterns of differential 

expression of miRNAs in lung AC and SCC may indicate the occurrence of different microRNA-

related signaling pathways underlying pathogenesis of these histologies. Our results clearly 

showed that several miRNAs can be strongly associated with lung cancer histology.  

According to previous reports [Arechaga-Ocampo et al., 2017; Lv et al., 2020; Sun et 

al., 2018], miR-29c can function as tumor suppressors or epigenetic normalizators in lung AC 

tumors. Plaisier and colleagues showed [Plaisier et al., 2012] that the miR-29 family inhibited 

specific genes accounting for invasion and metastasis of lung AC. Fabbri and colleagues [Fabbri 

et al., 2007] observed that the members of miR-29 family induced DNA hypomethylation and 

led to re-expression of certain tumor-suppressor genes such as PTEN and WWOX. In other 

studies, miR-29s has been shown to upregulate p53 levels and activate apoptosis in a p53-

dependent manner [Nguyen et al.,2022]. 

Similarly, several recent studies demonstrated that members of miR-34 family were 

strongly downregulated in NSCLC tumors as compared to normal tissues indicating a 

protective role of miR-34 in lung tumorigenesis. miR-34 family members were reported to act 

as tumor-suppressor miRNAs targeting many oncogenes related to proliferation, apoptosis 

and metastasis. The expression of miR-34a is directly trans-activated by tumor suppressor 

p53, and its activity is frequently reduced in p53 mutant tumors [Gallardo et al., 2009]. 

Notably, the frequency of p53 mutations is significantly higher in lung SCC than in lung AC. Our 

findings demonstrated over-expression of miR-34a-3p and miR-34a-5p in lung AC tumors, 

suggesting a potential synergism between miR-34a expression and activation of p53, the 

mechanism being relevant for SCC tumorigenesis. 

Recently, the members of miR-181 family were demonstrated to play a role in 

inhibition of the growth, migration, and invasion of NSCLC cells. Huang and colleagues recently 

showed that miR-181 reduction was associated with increased Bcl-2 levels, indicating its 

proapoptotic function of this molecule in lung cancer pathogenesis. 

Our group has found that the high co-expression of hsa-miR-30 family in lung AC may 

be of clinical significance in classification of NSCLC subtypes. According to Chen and colleagues 

[Chen et al., 2015], upregulation of mir-30d-5p inhibited tumor cell proliferation and motility 
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by direct targeting of cyclin E2 (CCNE2). Interestingly, several studies demonstrated that miR-

30d-5p was downregulated in lung SCC, in concordance with data derived from Cancer 

Genome Atlas (TCGA) miRNASeq database. This may suggest that miR-30d-5p can play a 

critical role as a tumor suppressor thus modulating the development and progression of 

NSCLC. 

In our study, we clearly showed that the specific patterns of miRNA expression may 

reflect biological distinctions of lung SCC. To the best of our knowledge, this is the first report 

to show that miR-31-3p and miR-31-5p are significantly up-regulated in SCC and AC as 

compared to controls. Thus, the members of miR-31 family can become useful diagnostic 

markers allowing for more detailed discrimination between lung AC and SCC. In a study 

[Okudela et al., 2014], it was demonstrated that the miR-31 expression was deregulated in 

lung cancer through either the amplification or loss of the host gene locus. It was also shown 

that the loss of miR-31 expression was observed mainly in lung AC tumors. Taken together 

above findings, we suggest that miR-31 can play an oncogenic role by promoting 

carcinogenesis, especially of lung SCC. 

In conclusion, we identified here and validated novel histology-specific miRNA patterns 

that can be further exploited diagnostically to precise subclassification of lung AC and SCC. 

Our results indicated that miRNA expression profiles in early-stages NSCLC may help elucidate 

histological distinctions of NSCLC tumors through the identification of different microRNA-

mediated signaling pathways involved in the pathogenesis of histologically distinct tumors. 

Assisted reproduction 

CASE STUDY V.: NIPGT-A 

SCM is found to be a potentially useful liquid biopsy sample that represents embryonic 

genetic material but the well-established clinical applications of PGT are still part of the 

routine. The NIPGT-A methods are evolving, since spent embryonic media collection does not 

require excess intervention and manipulation of the human embryo or any subsequent 

modification of the clinical routine and it has the potential to reflect chromosomal 

composition of the developing embryo [Fang et al., 2019, Farra et al., 2018; Gianaroli et al., 

2014; Handyside et al., 2016; Hammond et al., 2016, 2017; Ho et al., 2018; Huang et al., 2019; 
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Kuznyetsov et al., 2018; Rubio et al. 2020; Palini et al., 2013; Shitara et al., 2021; Stigliani et 

al., 2013; Vera-Rodriguez et al., 2018; Wu et al., 2015; Xu et al., 2016; Yeung et al., 2019]. 

The selection of embryos for transfer is a frequently appearing relevant clinical dilemma; 

therefore, main goal of this study was to complete a generally applicable non-invasive embryo 

selection strategy combined with same-cycle transfer and follow the already existing clinical 

routine concerning IVF methods, embryo culture and transfer conditions in cases of the 

genetic-disease-free population of women of average age 35. The routine sequential culturing 

and collected spent embryonic culture media after assisted hatching (AH) on Day 3 was 

applied, after embryos were morphologically evaluated and moved to fresh G2 media. In 

contrast with the facts that NIPGT and PGT, shows better results on Day 5 due to higher ICM 

mass of the embryos and a greater amount of leaked gDNA the current study was focused on 

the gDNA content on Day 3 of the cleavage-stage embryos’ culture media. This was because 

the aim was to complete the introduced NGS workflow within 48 h, when embryo assessment 

results are summarised for embryo selection for SET to achieve fresh, same-cycle embryo 

transfer. 

This is important for IVF protocols that do not include embryo cryopreservation and 

vitrification procedures. However, the promoted workflow may give better result on the SCM 

of Day 5 embryos combining it with “freeze-all” or “elective frozen embryo” strategies latest 

on the 6th day to give descent time for the NGS and a bioinformatic analysis. Generally, it can 

be fitted into most of the currently used IVF strategies. Choosing the right sequencing platform 

is also an important aspect of the workflow. Small NGS platforms like MiSeq and iSeq could 

be more cost effective and more suitable for real clinical practice. Moreover, there is 

possibility for time-lapse morphology evaluation in the time between Day 3 and Day 5 embryo 

culture, and additional verification of the selection decision can be gained during the 

sequential culturing methods. The demonstrated study design also enables the collection of 

multiplex data about the developing embryo, since around 5 µL of culture media of the total 

20 µL is enough for NGS analysis. The remainder could be used in other methods like 

proteomic and miRNA analysis, which can also be integrated into a complex embryo 

assessment strategy. 
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Conclusion 

Bioinformatics is a recent scientific discipline that has undergone strong and rapid 

progression and evolution [Ouzounis, 2012]. The use of bioinformatics analyses and support 

in biological studies for example in cancer research, metagenomics [Fomitcheva-Khartchenko 

et al., 2022; Hurwitz et al., 2014] and is now more and more accepted and viewed as normal. 

In the discipline of bioinformatics and computational biology, there are numerous ways in 

which curricula and specially autodidacticism can be designed to achieve the desired 

educational outcomes. In this thesis only just the tip of the iceberg has been presented. 

In conclusion, subclonal heterogeneity, dynamic clonal selection and various patterns of 

clonal variegation in CLL were identified with novel resistance-associated BTK mutations in 

individual patients treated with ibrutinib. 

The mutational landscapes of 14 target genes in PCNSL were determined applying deep 

NGS. The LST-assay was successfully used for molecular classification and a significantly lower 

proportion of cases displayed ABC phenotype compared to the traditional IHC-based 

characterization. The described workflow could lead to a more precise patient stratification with 

mutation profiling potentially applicable in the diagnostic algorithm of PCNSL. 

Methylation analyses in sequential GBM specimens revealed hypomethylation in certain 

pathways such as neuronal tissue development and angiogenesis likely involved in early tumor 

development and growth, while suggested altered regulation in catecholamine secretion and 

transport, Wnt expression and immune response contributing to recurrence. These pathways 

merit further investigations and may represent novel therapeutic targets. 

The study of global miRNA expression profiling in NSCLC allowed for identification of set 

of miRNAs of which expression profiles differed significantly between AC and SCC samples. 

The analyses demonstrated that specific miRNAs can be considered molecular drivers 

determining the histology of NSCLC. The miRNA expression profiles in early-stages NSCLC may 

help elucidate histological distinctions of NSCLC tumors through the identification of different 

microRNA-mediated signaling pathways involved in the pathogenesis of histologically distinct 

tumors. 

In the last case study, an optimized NIPTG-A workflow was proposed which combines 

low gDNA input based NGS application and downstream bioinformatic analyses to identify 

CNVs from SCM droplets. The workflow can be applied in same-cycle transfer IVF cases. The 
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study has clear limitations due to the sample size and the lack of comparison of spent 

blastocyst culture media with corresponding TE and ICM NGS analysis to accurately describe 

embryonic chromosomal composition. This was due to ethical regulation of the IVF centre, 

which limits all invasiveness during embryo culture. 

As our NGS analysis permitted deep CNV evaluation, chromosomal compositions of the 

embryos were also detected. We found clinically significant autosomal ploidy alterations only 

among the aborted embryos—this affected 75% of them. In some cases, the chromosomal 

ploidy aberration was found to be multiple, which can be irreconcilable with healthy 

embryonic development and embryonic viability. 
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