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ABSTRACT 

Bariatric surgery is an efficient treatment for the excess body weight in patients with severe 

obesity and resolving obesity-related comorbidities, including Type 2 Diabetes (T2D). Sleeve 

gastrectomy (SG) is the most common method among bariatric surgery procedures worldwide, 

including in Poland. SG is less complicated, safer, and delivers comparable weight-loss rates 

compared to other procedures. However, not all SG patients with T2D experience remission 

after surgery, so patient selection is valuable in clinic. Most prediction models were mainly 

built for procedures other than SG and used mainly clinical variables. There is increasing 

interest in using microRNAs (miRNAs) as biomarkers. Studies have shown differential changes 

of miRNA profile after bariatric surgery and associations between miRNA with weight loss 

after surgery. However, there are no studies so far on the predictive value of miRNA for T2D 

remission after bariatric surgery.  

The aim of this doctoral dissertation is to profile pre-surgery serum miRNA from sleeve 

gastrectomy patients with T2D and develop prediction models using baseline clinical and 

miRNA data to predict T2D remission after surgery. 

Before SG, clinical data and fasting serum samples were collected from 46 T2D patients. 

Serum miRNAs were profiled using the Serum/Plasma miRCURY LNA miRNA Focus PCR 

Panel (QIAGEN), and two patients were excluded due to sample hemolysis. Remission status 

was determined 12 months after SG. Six patients with unclear remission status were set aside 

for model evaluation. Model building was done with the remaining 38 patients. Variable 

selection was done using different approaches, including Least Absolute Shrinkage and 

Selection Operator (LASSO). LASSO was also used for model building. Prediction models 

were compared and then assessed in the validation set. 

A total of 26 out of 38 patients achieved T2D remission 12 months after SG. The 

prediction model with only clinical variables misclassified two patients, which were correctly 

classified using miRNAs. Two miRNA-only models achieved an accuracy of one but performed 

poorly for the validation set. The best miRNA model was a mixed model (accuracy: 0.974) 

containing four miRNAs (hsa-miR-32-5p, hsa-miR-382-5p, hsa-miR-1-3p, and hsa-miR-21-

5p) and four clinical variables (T2D medication, sex, age, and fasting blood glucose). These 

miRNAs are involved in pathways related to obesity and insulin resistance.  

The results suggest that four serum miRNAs might be predictive biomarkers for T2D 

remission 12 months after SG, but further validation studies are needed. 

 

KEYWORDS: Sleeve Gastrectomy; Type 2 Diabetes; microRNA; T2D remission; prediction 

 



4 

 

STRESZCZENIE 

Chirurgia bariatryczna jest skutecznym sposobem leczenia nadmiernej masy ciała u pacjentów 

z otyłością olbrzymią i leczenia chorób współistniejących z nią związanych, w tym cukrzycy 

typu 2 (T2D). Rękawowa resekcja żołądka (SG) jest najczęstszą metodą wśród zabiegów 

chirurgii bariatrycznej na całym świecie, w tym w Polsce. SG jest mniej skomplikowana, 

bezpieczniejsza i zapewnia porównywalne wskaźniki utraty wagi, w porównaniu z innymi 

procedurami. Jednak nie wszyscy pacjenci chorujący na T2D, poddawani zabiegowi 

doświadczają remisji po operacji. Dlatego też prawidłowa selekcja pacjentów, którzy 

najbardziej skorzystają na zabiegu, jest tak istotna w praktyce klinicznej. Większość modeli 

predykcyjnych została zbudowana głównie dla procedur innych niż SG i wykorzystywała 

głównie zmienne kliniczne. Rośnie zainteresowanie wykorzystaniem cząsteczek mikroRNA 

(miRNA) jako biomarkerów. Badania wykazały zróżnicowane zmiany profilu miRNA po 

operacji bariatrycznej oraz związki między miRNA, a utratą masy ciała po operacji. Jednak jak 

dotąd nie ma badań dotyczących wartości predykcyjnej stężenia miRNA dla remisji T2D po 

operacji bariatrycznej. 

Celem pracy doktorskiej jest opracowanie modeli predykcyjnych z wykorzystaniem 

wyjściowych danych klinicznych i profilu ekspresji miRNA w celu przewidywania remisji T2D 

po operacji.  

W badaniu wykorzystano dane kliniczne i próbki surowicy pobranej na czczo od 46 

pacjentów chorujących na T2D. Wykonano profilowanie cząsteczek miRNA w surowicy z 

wykorzystaniem panelu “Serum/Plasma miRCURY LNA miRNA Focus PCR Panel” 

(QIAGEN) i dwóch pacjentów wykluczono z powodu hemolizy próbki. Status remisji 

określono 12 miesięcy po zabiegu SG. Sześciu pacjentów z niejasnym stanem remisji zostało 

wykluczonych z oceny skuteczności modelu. Budowa modelu została wykonana z pozostałymi 

38 pacjentami. Doboru zmiennych dokonano przy użyciu różnych podejść, w tym metody 

LASSO, (ang. Least   Absolute   Shrinkage and   Selection Operator). Modele prognostyczne 

zostały porównane, a następnie ocenione w grupie walidacyjej. 

Łącznie 26 z 38 pacjentów osiągnęło remisję T2D po 12 miesiącach od zabiegu SG. 

Model predykcyjny zawierający tylko zmienne kliniczne błędnie sklasyfikował dwóch 

pacjentów, którzy zostali prawidłowo sklasyfikowani przy użyciu modelu zawierającego 

miRNA. Dwa modele zawierające tylko miRNA osiągnęły dokładność równą jeden, ale 

wypadły słabo w zestawie walidacyjnym. Najlepszym modelem miRNA był model mieszany 

(dokładność: 0,974) zawierający cztery cząsteczki miRNA (hsa-miR-32-5p, hsa-miR-382-5p, 

hsa-miR-1-3p i hsa-miR-21-5p) oraz cztery zmienne kliniczne (leki stosowane w leczeniu T2D, 

płeć, wiek i stężenie glukozy we krwi na czczo). Zidentyfikowane cząsteczki miRNA biorą 

udział w szlakach związanych z otyłością i insulinoopornością.  

Wyniki sugerują, że zidentyfikowane cztery cząsteczki miRNA w surowicy mogą być 

biomarkerami predykcyjnymi dla remisji T2D 12 miesięcy po zabiegu SG. W celu 

potwierdzenia ich potencjału do zastosowania klinicznegopotrzebne są dalsze badania 

walidacyjne. 

SŁOWA KLUCZOWE: rękawowa resekcja żołądka; cukrzyca typu 2; mikroRNA; remisja 

T2D; modele predykcyjne
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PI3K-Akt Phosphatidylinositol 3-kinase-protein kinase b 
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QC Quality control 
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RNA Ribonucleic acid 

RT Reverse transcription 

RYGB Roux-en-Y gastric bypass  

SG Sleeve Gastrectomy 

SNP Single Nucleotide Polymorphism 

T2D Type 2 diabetes mellitus 

TG Triglyceride levels 

WBC White blood cell count 
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Introduction 

Obesity, defined as BMI of ≥30 kg/m2, is a chronic disease with multiple health consequences1. 

Globally, about 604 million adults had obesity in 2015. The global prevalence of severe obesity, 

defined as BMI ≥40 kg/m2 or ≥35 kg/m2 in the presence of comorbidities2, was 0.64% (0.46–

0.86) in men and 1.6% (1.3–1.9) in women3. The health consequences of obesity are significant. 

Studies have reported over 230 comorbidities and complications of obesity, including 

hypertension, cardiovascular diseases, and type 2 diabetes mellitus (T2D)4. Obesity is currently 

the number one cause of preventable disease and disability, surpassing smoking4.  

Specifically for T2D, increasing body weight is strongly associated with increased T2D 

risk5–9. Obesity can be attributed to more than 80 percent of T2D cases and is related to many 

diabetes-related deaths4. A study spanning over thirty years in the US found that BMI accounted 

for a 50% and 100% increase in T2D prevalence in men and women, respectively10. BMI 

contributed more than age and race/ethnicity to the increase in T2D prevalence10. Additionally, 

nurses with a baseline BMI of >35 kg/m2 had a 100-fold increased risk of incident T2D over 

14 years compared to nurses with BMI <22 kg/m211. So, it is not surprising that weight loss 

prevents progression to T2D and even T2D remission12. Even modest weight loss improves 

glycemic control in patients with T2D12.  

There are many different approaches to obesity therapy, such as dietary changes, 

increased physical therapy, and pharmacologic therapy2. However, those with severe obesity 

require aggressive treatment for effective weight loss, including multi-component behavioral 

intervention and bariatric surgery2.   

Long-term weight loss at a great magnitude can be achieved with bariatric surgery, which 

is a collective term for surgical methods to treat obesity2. Bariatric surgery is reserved for those 

with a BMI ≥40 kg/m2, or a BMI of ≥ 35 kg/m2 with at least one serious comorbidity, who 
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have not achieved weight loss with other therapies13. Weight loss from bariatric surgery can be 

significant, reaching 40% weight loss at 12-18 months post-surgery2. Bariatric surgery may also 

alter the body's adipose tissue "set point", resulting in long-term weight loss and low recidivism 

rates (the regaining of lost weight)2. Additionally, bariatric surgery may reduce obesity-related 

comorbidities14–16 and prevent obesity-related diseases17. The Swedish Obese Subjects study 

reported a reduction in incident rates of T2D, hypertension, and dyslipidemia in the bariatric 

surgery group compared to the conventional weight loss treatment group after 10-20 years of 

follow-up16. In the case of T2D, glucose control via surgical treatment was reported to be better 

than medical therapy 18–21. Recently, bariatric surgery has been endorsed as a treatment for 

obese diabetic patients by the International Diabetes Federation, American Diabetes 

Association, and American College of Surgeons13.  

Bariatric procedures can be grouped into three methods: restriction, malabsorption, and a 

combination of both22. Restrictive procedures limit the stomach's capacity through different 

approaches. The most common restrictive procedure is sleeve gastrectomy (SG). This method 

also has an additional hormonal effect on hunger control where SG decreases ghrelin levels and 

increases GLP-1 and PYY levels, thus promoting less hunger22,23. Malabsorption methods 

modify the small intestine to decrease the effectiveness of nutrient absorption. Although 

malabsorption methods deliver superior weight loss, these methods cause significant 

malnutrition and micronutrient deficiencies22. Other methods, such as Roux-en-Y gastric 

bypass (RYGB) and biliopancreatic diversion with duodenal switch, are both restrictive and 

malabsorptive. In RYGB, the effects are delivered through a small gastric pouch and small 

bowel reconfiguration combination.  

Globally, the top two bariatric surgery methods are RYGB and SG. In 2003, RYGB was 

performed at about 65% of all bariatric procedures, but the percentage decreased to 47% in 

201122,24–26. In 2016, SG became the most commonly performed procedure globally, including 
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Poland26–29. SG is a less complicated procedure, is less drastic than other methods14,30–32, and 

delivers comparable weight loss rates13,15,30. However, SG has lower T2D remission rates 

compared to RYGB14,31. Long-term T2D remission for SG was relatively low in two studies: 

35.3% for Taiwanese patients and 28% for American patients after five years of surgery31,32, 

but another study reported a higher T2D remission rate of 66% five years after SG33. Therefore, 

identifying patients who can benefit the most from SG is valuable for effective treatment. 

Different prediction models have been developed to predict T2D remission after bariatric 

surgery 31,34–40. These models use clinical predictors, such as age, sex, BMI, HbA1c, T2D 

medication, T2D duration, and fasting glucose levels31,34–40. However, most models were 

developed using cohorts of surgery methods other than SG or a limited number of SG patients34. 

A 2019 study found that these models overestimated diabetes remission in SG patients with 

varying degrees34. Better prediction models are needed for SG patients. The inclusion of 

biomarkers might improve diabetes remission models, especially since molecular biology 

technologies are becoming more affordable and frequently used in clinics.  

There is increasing interest in using biomarkers as predictive variables for bariatric 

surgery outcomes but still limited for T2D remission. A study demonstrated a significant weight 

loss difference after SG between different genotypes of the Single Nucleotide Polymorphism 

(SNP) rs9930506 on an obesity-associated gene (FTO)41. However, a study on another SNP on 

FTO (rs9939609) did not observe any associations with weight loss after SG42. Similarly, a 

genetic risk score of SNPs related to BMI and waist/hip ratio did not predict weight loss after 

obesity surgery (RYBG and SG)43. To the author's best knowledge, only one genetic biomarker 

study for T2D remission has been done: a 2016 study used structural genetic variants as 

predictive biomarkers for T2D remission after RYGB44. Epigenetic factors are yet to be 

evaluated but are interesting potential biomarkers. Epigenetic machinery, such as DNA 

methylation, histone modifications, and non-coding RNAs can respond to external 
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environmental cues by altering gene expression levels without changing the DNA sequence. 

One particular epigenetic factor that is gaining interest is microRNAs (miRNAs). These small 

non-coding RNAs (21–22 nucleotides) are important for regulating gene expression post-

transcriptionally. Single-stranded miRNA binds to a complementary target messenger RNA 

(mRNA) to disrupt translational processes45–49. A single miRNA can have multiple targets and 

regulate many different biological pathways50–52. Studies have reported miRNAs that regulate 

obesity-related pathways53–60, and miRNA dysregulation is linked to obesity and its 

comorbidities61–65. Additionally, serum miRNAs are highly stable and resistant against harsh 

conditions, such as ribonuclease A digestion, frequent freeze-thaw cycles, and pH changes66, 

making miRNAs promising biomarkers for clinical use.  

In recent years, good associations between microRNAs (miRNAs) and bariatric surgery 

outcomes were reported67,68.  Recent studies demonstrated a significant change in serum 

miRNA expression before and after RYGB in T2D patients69–71. A total of 17 animal model 

and human studies have been done on miRNA and bariatric surgery by 201968. There are some 

common findings despite differences in study design, surgery procedures, and profiling 

methods. Fourteen miRNAs had the same direction of modulation after surgery in at least two 

studies (downregulated: hsa-miR-93-5p, hsa-miR-106b-5p, hsa-let-7b-5p, hsa-let-7i-5p, hsa-

miR-16-5p, hsa-miR-19b-3p, hsa-miR-92a-3p, hsa-miR-222-3p, hsa-miR-142-3p, hsa-miR-

140-5p, hsa-miR-155-5p, rno-miR-320-3p; upregulated: hsa-miR-7-5p, hsa-miR-320c)68. A 

recent publication in 2022 reported good predictive performance on preoperative serum ratios 

of hsa-miR-328-3p/hsa-miR-31-5p or hsa-miR-181a-5p/hsa-miR-31-5p and BMI on excess 

weight loss > 55% at six months after SG or gastric bypass surgery72. However, the predictive 

value of miRNAs for T2D remission has not been explored before.  

High-throughput profiling methods have made detecting hundreds of biomarkers from a 

biological sample easier, but the number of study participants is often small. This high-
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dimensional situation is problematic for traditional statistical models73. One approach to 

handling such situations is regularization, such as LASSO (least absolute shrinkage and 

selection operator)73–75. LASSO adds a shrinkage penalty to least square estimates, and the 

shrinkage penalty is tuned using the parameter λ74. When λ = 0, the penalty term has no effect, 

and the regression will produce the least squares estimates74. When λ is large enough, some 

coefficient estimates will be equal to zero, thus performing variable selection74.  

Selecting a good value for LASSO's tuning parameter is important and is done using 

cross-validation. Cross-validation is also used to estimate test set error when the number of 

samples is too small for the typical validation set approach74. Typically, samples are separated 

randomly into a training set and a test or validation set. However, this creates a situation where 

only a subset of observations (the training set) is used to build the model. Statistical methods 

tend to perform worse when trained on fewer observations74. 

Additionally, the test error rate can be highly variable, depending on the training-test split 

process74. Cross-validation addresses these two issues, and there are two types of cross-

validation: leave-one-out cross-validation (LOOCV) and k-fold cross-validation (k-fold CV). 

LOOCV sets aside a single observation as the validation set, and the remaining observations 

are used to train the model. The procedure is repeated for n times (n = number of observations 

or patients), and the final error rate estimate is the average error rate from each round74. So, 

LOOCV uses as many observations as possible for building the model, but the process can be 

computationally expensive.  

An alternative to LOOCV is k-fold CV. This approach randomly divides the observations 

into k groups equally and randomly. One group, or fold, is set aside for validation, while the 

remaining observations are used to build the model. The method is repeated k times (k = number 

of folds or groups) then the error rates are averaged to get the final error rate estimate74.  
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Aims 

This doctoral dissertation studies the predictive value of pre-surgery clinical variables and 

serum miRNAs for predicting T2D remission 12-months after SG. A machine learning 

approach was used to select variables, build, and evaluate prediction models.  

A meta-analysis of microRNA profiling studies for bariatric surgery has been described 

in the review article (I). At the time of publication, there were no miRNA studies for predicting 

bariatric surgery outcomes. Thus, the presented articles are focused on describing miRNA 

profile changes after bariatric surgery. Despite differences in study design, some common 

findings have been described in the Introduction section.  

Prediction modeling using microRNAs and clinical data was reported previously by the 

PhD candidate in the original article (II). The authors aimed (1) to profile pre-surgery serum 

miRNA from sleeve gastrectomy patients with T2D and (2) to develop prediction models using 

baseline clinical and miRNA data to predict T2D remission after surgery. Clinical variables and 

miRNAs' predictive value were described, compared, and presented in the article (II).   
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Materials and methods 

Study participants 

Figure 1 illustrates an overview of the study design. Initially, between 2016 to 2019, 321 Polish 

patients with obesity were recruited to the Bialystok Bariatric Surgery Study (BBSS; 

ClinicalTrials.gov Identifier: NCT04634591). A subset of 46 patients with T2D (based on the 

American Diabetes Association criteria76, which matches the Diabetes Poland criteria77) 

underwent Sleeve Gastrectomy and had follow-up data 12 months post-surgery. The inclusion 

criteria for surgery was BMI >= 40 kg/m2 or BMI >= 35 kg/m2 with comorbidities. The 

exclusion criteria include prior bariatric surgery, substance abuse, uncontrolled psychiatric 

illness, expected lack of compliance, or advanced cancer. Baseline clinical data and fasted 

serum samples were collected two to four weeks prior to surgery. Two patients were then 

excluded due to hemolysis observed in serum sample. T2D remission status was determined 

using the American Society of Metabolic and Bariatric Surgery (ASMBS) Criteria78, based on 

T2D medication status, HbA1c, and fasting glucose 12 months after surgery. Binary remission 

status was created: patients with complete and partial remission were grouped into Remission, 

while patients with improvement, unchanged, and recurrence were grouped into Non-remission. 

Six patients had unclear remission status due to missing information post-surgery. These six 

patients were held out for model evaluation. The remaining 38 patients with clear remission 

status were used for variable selection and building classifiers. All participants provided 

informed consent before the study. The study was conducted in accordance with the Declaration 

of Helsinki, and the protocol was approved by the Ethics Committee of the Medical University 

of Białystok (project identification code: R-I-002/546/2015)79 
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Sample preparation and miRNA extraction  

Serum miRNA profiling was done from baseline (before the surgery) serum samples. Blood 

samples were collected in Sarstedt S-Monovette tubes (Sarstedt, Inc., Nümbrecht, North Rhine-

Westphalia, Germany) with separator gel. The samples were allowed to clot for at least 30 

minutes and were then centrifuged for 10 minutes at 2,500 rpm. Serum samples were 

immediately stored at −80°C until use. 

RNA was isolated using the miRNeasy Serum/Plasma Advanced Kit (QIAGEN, Hilden, 

Germany). Three RNA spike-ins (UniSP2, UniSP4, and UniSP5) were added to the kit's "RPL 

buffer" as RNA isolation controls. Serum volumes of 200 μL were used for isolation, and 20 

μL of nuclease-free water was used for elution. A no-template sample (nuclease-free water) 

was also included to evaluate RNA isolation quality. 

Quality control of miRNA extraction  

The miRCURY locked nucleic acid (LNA) miRNA QC PCR Panel (QIAGEN) was used to 

assess miRNA quality, monitor complementary DNA (cDNA) synthesis, evaluate hemolysis, 

and assess polymerase chain reaction (PCR) efficiency. For this quality control (QC) panel, two 

μL of miRNA elute was used for ten μL of reverse transcription (RT) reaction using the 

miRCURY LNA RT Kit (QIAGEN). Two spike-ins were used for cDNA synthesis (UniSp6 

and cel- miR-39). A total of 1.5 μL of cDNA was used for the QC panel. Two samples were 

later excluded because of hemolysis (final n = 44), as indicated by a difference in cycle 

threshold (Ct) values between hsa-miR-23a-3p and hsa-miR-451a of more than five80. PCR was 

done using the Roche LightCycler 480 Instrument (Roche, Basel, Switzerland) with SYBR 

Green dye. 

miRNA profiling 

The Serum/Plasma miRCURY LNA miRNA Focus PCR panel (Qiagen, CA, USA) was used 

for profiling, and PCR was done using the Roche LightCycler 480 Instrument with SYBR 
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Green dye. Profiling was done with a 96-well plate format. For this panel, four μL of miRNA 

elute was used for 20-μL cDNA synthesis, along with the two spike-ins for cDNA synthesis. 

The whole cDNA reaction was used for profiling. No-template controls were also used to 

evaluate background miRNA levels. 

Data pre-processing 

Raw miRNA data was pre-processed using the GeneGlobe Data Analysis Center (Qiagen; 

geneglobe.qiagen.com) to remove miRNAs below a Ct cut-off (Ct = 35) and apply interplate 

calibration. The processed data was then normalized using a global mean normalization, and 

there were no missing values for miRNAs. 

A total of 43 baseline clinical variables were collected from patients, including blood 

biochemical parameters, blood morphology, and anthropometric measurements. A total of 26 

clinical variables with missingness less than 10% were selected, and median imputation was 

used for missing values. The total number of clinical and miRNA variables was 205. 

Variable selection 

Ten unique variable sets were created: six sets with only miRNA variables, two with only 

clinical variables, and two sets with miRNA and clinical variables. Variables were normalized 

to obtain z scores. 

Out of the 44 patients with miRNA data, six patients with unclear remission status were 

set aside for model evaluation. Therefore, 38 patients with clear remission status were used for 

variable selection and building classifiers. 

Selecting serum miRNA variables 

Six miRNA-only variable sets were created using different methods. One set contains all 179 

miRNAs, another includes miRNAs from statistical testing, and four other sets contain LASSO-

selected miRNAs. 
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miRNA selection using statistical significance and fold change 

Fold change is the ratio of relative normalized miRNA expression between remission groups. 

Unpaired t tests were used to calculate p values. Four miRNAs with p < 0.05 and fold 

regulations of at least 1.5 were selected in this variable set. 

Variable selection with LASSO 

LASSO75 with repeated 10-fold cross-validation (500 repeats) was built using all 179 miRNAs. 

A total of 20 miRNAs had nonzero coefficients, and they were ranked based on their 

importance. The top five, ten, fifteen, and all nonzero miRNAs were selected as four sets of 

LASSO-selected miRNAs. 

Selecting pre-surgery clinical variables 

Two sets of clinical variables were created: one set contains all 26 variables, and another has 

LASSO-selected variables. The LASSO selection process is the same as that for miRNAs. 

Repeated cross-validation with ten folds and 500 repeats was done using all 26 clinical 

variables, and then the resulting nonzero variables were selected. 

Selecting serum miRNA and clinical variables 

Two sets of miRNA and clinical variables were created: one set contains all available variables 

(205 variables), and another has LASSO-selected variables. The LASSO selection process was 

done using all variables with the same repeated cross-validation approach, and the nonzero 

variables were selected. 

Prediction models 

Ten LASSO models were built with each variable set. A leave-one-out cross-validation 

approach was used. Model performances were obtained using caret and epiR in R (R 

Foundation, Vienna, Austria), and models were compared based on their accuracy. 
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Model evaluation using six patients with unclear remission status 

Remission labels were determined using available post-surgery clinical measures. Label 

decision was first made based on the discontinuation of T2D medicines. Then, HbA1c and 

fasting glucose information were considered. For prediction, we first applied the same median 

imputation and Z score scalar used for the model-building data. Then prediction was made using 

four models: one clinical-only model, one clinical and miRNA model, and two miRNA models. 

We then compared the prediction with their remission labels. 

Statistical testing  

Statistical testing was done to compare remission groups: chi-squared test and Kruskal-Wallis 

for categorical and continuous clinical variables, respectively, and unpaired Student's t-tests for 

miRNA profiles. Pearson correlation was calculated between clinical variables and miRNAs 

hsa-miR-32-5p, hsa-miR-382-5p, hsa-miR-1-3p, and hsa-miR-21-5p. False discovery rate 

(FDR) was done for multiple testing correction for all statistical testing. For the correlation 

analysis, two plots for unadjusted and adjusted p values were made using ggcorrplot package 

in R (R Foundation).  

Pathway analysis 

Pathway analysis was done for miRNAs hsa-miR-32-5p, hsa-miR- 382-5p, hsa-miR-1-3p, and 

hsa-miR-21-5p. The DIANA miRPath version 3 software (http://www.microrna.gr/miRPathv3) 

was used to identify experimentally reported target genes and evaluate the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathways. 
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Results 

Patient demographics and miRNA profiles 

Six clinical variables were significantly associated with remission after SG: T2D medication; 

age; HbA1c; and fasting plasma glucose, as well as plasma glucose 30 and 60 minutes after oral 

glucose tolerance test (OGTT; Table 1). The remission group had a much lower proportion of 

patients taking diabetes medication before surgery (remission vs. non-remission: 12% vs. 

83.3%, adjusted p = 0.003). The remission group was also significantly younger and had lower 

plasma glucose and HbA1c. Additionally, the remission group had higher plasma insulin and 

took fewer medications for chronic diseases, but the relationships were not significant after 

FDR (Table 1). A total of 179 circulating miRNAs were profiled from serum samples collected 

before surgery. None of the miRNAs was significant between remission and non-remission 

groups after multiple testing correction using FDR (Table 2). However, eight miRNAs had 

unadjusted p ≤ 0.05, and four of them had a fold regulation of at least 1.5 (remission vs. non-

remission group: upregulation = hsa-miR-382-5p, hsa-miR-409-3p; downregulation = hsa-

miR-375, hsa-miR-1-3p, respectively). 

Variable selection and modeling results 

Ten variable sets were created based on different variable selection processes (Table 3). One 

set for miRNAs contained the four significantly differentially expressed miRNAs (GeneGlobe 

miRNAs: hsa-miR-382-5p, hsa-miR-409-3p, hsa-miR-375, and hsa-miR-1-3p). LASSO 

selected 20 out of 179 miRNAs after repeated cross-validation, including three out of 4 

significant miRNAs (hsa-miR-382-5p, hsa-miR-375, and hsa-miR-1-3p). LASSO selected four 

out of twenty-six clinical variables: T2D medication, age, fasting plasma glucose, and sex. 

When all variables were provided, LASSO chose the same four clinical variables (T2D 
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medication, sex, age, and fasting plasma glucose) and four miRNAs (hsa-miR-1-3p, hsa-miR-

21-5p, hsa-miR-32-5p, and hsa-miR-382-5p; Table 3, set 4). 

Among the ten prediction models, classifiers with miRNA variables performed best. 

Models with 10 or 15 miRNAs achieved an accuracy of 1 (95% CI: 0.91-1; Table 3). Models 

with only clinical variables misclassified two non-remission patients, with an accuracy of 0.947 

(95% CI: 0.82-0.99; Tables 3 and 4). When four miRNAs were added into the clinical model, 

patient 1 was correctly predicted but not patient 2 (Figure 2A; Table 4). Patient 2 was later 

correctly classified in the miRNA-only models, and no other misclassifications were found 

(Figure 2B; Table 4). 

Evaluating prediction models using six patients with unclear remission status 

Four classifiers were selected for evaluation: a clinical-only model, a mixed model with 

miRNA and clinical variables, and two miRNA-only models (Table 5). Models with clinical 

variables agreed the most with post-surgery data (Table 5). All models predicted patient 

A as non-remission, but post-surgery data suggested remission. All miRNA models predicted 

non-remission for patient C. Post-surgery values were within the remission group, but this 

patient had missing medication information. The miRNA-only models had an increasing 

disagreement with post-surgery data, indicating overfitting with the training data. 

Evaluating the four predictive miRNAs (hsa-miR-32- 5p, hsa-miR-382-5p, 

hsa-miR-1-3p, hsa-miR-21-5p) 

Four miRNAs that improved prediction for clinical models had significant correlations with 

glucose measures and HbA1c, but not with other clinical measures (Figure 3). The miRNA hsa-

miR-382-5p was significantly positively correlated with HbA1c (r = 0.432) and plasma glucose 

(r = 0.485 for fasting and r = 0.359 for 30 minutes during OGTT). The relationship with fasting 

plasma glucose was maintained after FDR (Figure 3). There were other significant correlations 

between miRNA and clinical variables, but they were not significant after FDR; for example, 
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fasting plasma glucose with hsa-miR-32-5p (r = −0.354) and hsa-miR-21-5p  (r = −0.346), as 

well as hemoglobin cell count with hsa-miR-21-5p (r = −0.456). The miRNA hsa-miR-1-3p 

was not significantly correlated with any of the selected clinical variables. The miRNA hsa-

miR- 32-5p was positively correlated with hsa-miR-1-3p (r = 0.393) and hsa-miR-21-5p (r = 

0.362) but was no longer significant after FDR. 

Pathway analysis was done using the DIANA miRPath version 3 software for these 

miRNAs. Three out of four miRNAs regulated 39 KEGG pathways, including 19 signaling 

pathways related to obesity and insulin resistance (Table 6). There was no information for hsa-

miR-1-3p in this database. Within these 19 pathways, hsa-miR-32-5p  regulated 253 genes, hsa-

miR-21-5p regulated 330 genes, and hsa-miR-382-5p regulated 73 genes. 
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Table 1 – Baseline clinical data from patients measured before surgery 

 

Variable Remission Non-remission p value 
p value 

(adj) 

No. of patients 26 12   

Age at time of SG (years) 45.5 (38.25;54) 58 (56.25;65.25) 0 0.004 

Diabetes medication before SG (n = 37) 3 (12%) 10 (83.3%) 0 0.003 

Fasting blood glucose levels before SG (mg/dl) 132.5 (123.25;143.5) 154.5 

(146.75;178.75) 

0 0.004 

Plasma glucose levels measured at 60 minutes 

during OGTT (n = 35) (mg/dl) 

248 (224.75;282.25) 298 (283;315) 0.002 0.012 

Haemoglobin A1c before SG (%) 6.4 (5.9;6.88) 7.1 (6.65;8.25) 0.005 0.021 

Plasma glucose levels measured at 30 minutes 

during OGTT (n = 35) (mg/dl) 
232.5 (194.5;239) 248 (235;271) 0.011 0.042 

Plasma insulin levels measured at 30 minutes 

during OGTT (n = 35) (IU/ml) 
128.08 

(109.6;173.73) 

74.08 

(61.61;126.53) 

0.031 0.091 

Plasma insulin levels measured at 120 minutes 

during OGTT (n = 35) (IU/ml) 

121.86 

(82.54;243.84) 

90.56 

(52.09;105.67) 

0.045 0.118 

Number of chronic disease medications before 

SG (two or more) 

12 (46%) 12 (100%) 0.017 0.216 

Plasma insulin levels measured at 60 minutes 

during OGTT (n = 35) (IU/ml) 

159.18 

(146.12;231.63) 

123.27 

(73.27;168.24) 

0.213 0.395 

Plasma glucose levels measured at 120 minutes 

during OGTT (n = 35) (mg/dl) 

194.5 

(159.75;218.25) 

225 (183;243) 0.186 0.395 

High-density Lipoprotein levels before SG 

(mg/dl) 
39.5 (35;45) 44.5 (37.75;53.5) 0.209 0.395 

Low-density Lipoprotein levels before SG 

(mg/dl) 
118.5 (97.12;146) 103.95 

(82.83;133.75) 

0.272 0.471 

Bilirubin levels before SG (mg/dl) 0.47 (0.36;0.59) 0.38 (0.3;0.57) 0.307 0.499 

Number of chronic diseases before SG (one or 

more) 

19 (73%) 12 (100%) 0.084 0.546 

Male sex 16 (61.5%) 10 (83.3%) 0.333 0.546 

Fasting blood insulin levels before SG (IU/ml) 34.55 (29.53;53.57) 34.72 (27.55;43.52) 0.396 0.567 

Cholesterol levels before SG (mg/dl) 190 (165.5;214) 184 (152.5;203.25) 0.387 0.567 

Platelet blood count before SG (10^3/ul) 224 (203.75;263) 209.5 (190;283.75) 0.414 0.567 

Percent body fat before SG (%) 47.1 (44.77;50.58) 49.4 (44.83;51.4) 0.46 0.594 

C-reactive protein levels before SG (mg/l) 5.89 (2.62;10.53) 3.92 (1.69;10.24) 0.48 0.594 

White blood cell count before SG (10^3/ul) 7.95 (6.65;9.07) 8.2 (7.5;8.62) 0.753 0.879 

Red blood cell count before SG (10^6/ul) 4.98 (4.7;5.26) 5.07 (4.82;5.29) 0.777 0.879 

Hemoglobin cell count before SG (g/dl) 14.35 (13.25;15.05) 14.45 (13.3;15.05) 0.826 0.895 

Triglyceride levels before SG (mg/dl) 146 (131.25;231) 163 (126;225) 0.888 0.923 

BMI before SG (kg/m2) 46.87 (43.33;50.77) 45.87 (43.65;52.75) 0.975 0.975 

Note: Values show the median (first;third quartiles) or the number of patients and percentages. P values are shown for the χ
2 

test (categorical 

variables) and Kruskal-Wallis test (continuous variables). Rows with p < 0.05 are shown in bold. Multiple testing correction was done using the 

false discovery method. If not otherwise stated, n = 38. 
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Table 2 – Comparing miRNA profiles between the Remission and Non-remission groups.  

 

miRNA Fold change Fold regulation p value p value (adj) 

hsa-miR-382-5p 1.800 1.800         0.002      0.420 

hsa-miR-1-3p 0.620 -1.610 0.015 0.819 

hsa-miR-375 0.630 -1.580 0.017 0.819 

hsa-miR-409-3p 1.530 1.530 0.037 0.824 

hsa-miR-28-5p 1.400 1.400 0.024 0.819 

hsa-miR-28-3p 1.330 1.330 0.027 0.819 

hsa-miR-27a-3p 1.300 1.300 0.027 0.819 

hsa-miR-27b-3p 1.260 1.260 0.032 0.823 

hsa-miR-376c-3p 1.540 1.540 0.054 0.851 

hsa-miR-584-5p 1.410 1.410 0.070 0.851 

       
Note: Top ten miRNAs with the smallest p-values are shown. The miRNAs with fold regulation of at least 1.5 and significant p-values are bolded. 
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Table 3 – Prediction models using ten different variable sets 

 Variable set Variables 
Accuracy 

(95% CI) 

  Sensitivity 

  (95% CI) 

  Specificity 

  (95% CI) 

1 Top 10 LASSO-selected miRNAs hsa-miR-382-5p, hsa-miR-193a-5p, hsa-miR-501-3p, hsa-miR-21-5p, 

hsa-miR-877-5p, hsa-miR-141-3p, hsa-miR-375, hsa-miR-32-5p, hsa- 

miR-2110, hsa-miR-1260a 

1 (0.91-1) 1 (0.74-1) 1 (0.87-1) 

2 Top 15 LASSO-selected miRNAs hsa-miR-382-5p, hsa-miR-193a-5p, hsa-miR-501-3p, hsa-miR-21-5p, 1 (0.91-1) 1 (0.74-1) 1 (0.87-1) 

hsa-miR-877-5p, hsa-miR-141-3p, hsa-miR-375, hsa-miR-32-

5p, hsa- miR-2110, hsa-miR-1260a, hsa-miR-140-5p, hsa-miR-

543, hsa-miR-26a-5p, hsa-miR-27b-3p, hsa-miR-423-3p 

3          Top 20 LASSO-selected miRNAs hsa-miR-382-5p, hsa-miR-193a-5p, hsa-miR-501-3p, hsa-miR-21-5p, 

hsa-miR-877-5p, hsa-miR-141-3p, hsa-miR-375, hsa-miR-32-5p, 

hsa-miR-2110, hsa-miR-1260a, hsa-miR-140-5p, hsa-miR-543, hsa- 
miR-26a-5p, hsa-miR-27b-3p, hsa-miR-423-3p, hsa-miR-151a-5p, hsa- 

0.974 (0.86-1) 0.917 (0.62-1) 1 (0.87-1) 

 miR-29b-3p, hsa-miR-1-3p, hsa-miR-30e-5p, hsa-miR-125a-5p    

4             8 LASSO-selected miRNAs and  

                       clinical variables 

T2D medication, age, hsa-miR-382-5p, hsa-miR-32-5p, fasting blood 

glucose, sex, hsa-miR-1-3p, hsa-miR-21-5p 
0.974 (0.86-1) 0.917 (0.62-1) 1 (0.87-1) 

5             All clinical variables All clinical variables (26) 0.947 (0.82-0.99) 0.833 (0.52-0.98) 1 (0.87-1) 

6             4 LASSO-selected clinical   variables T2D medication, age, fasting blood glucose, sex 0.947 (0.82-0.99) 0.833 (0.52-0.98) 1 (0.87-1) 

7             All available variables All miRNAs and clinical variables (205) 0.947 (0.82-0.99) 0.833 (0.52-0.98) 1 (0.87-1) 

8             Top 5 LASSO-selected miRNAs hsa-miR-382-5p, hsa-miR-193a-5p, hsa-miR-501-3p, hsa-miR-21-5p,  0.921 (0.79-0.98) 0.917 (0.62-1) 0.923 (0.75-0.99) 

hsa-miR-877-5p 

9             All miRNAs All miRNAs (179) 0.842 (0.69-0.94) 0.583 (0.28-0.85) 0.962 (0.8-1) 

10           GeneGlobe miRNAs hsa-miR-409-3p, hsa-miR-382-5p, hsa-miR-375, hsa-miR-1-3p 0.789 (0.63-0.9) 0.5 (0.21-0.79) 0.923 (0.75-0.99) 

Note: LASSO models ranked based on accuracy. 
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Figure 1  – Overview of study design. (A) General framework of patient stratification based on 

miRNAs and clinical variables. (B) The study’s approach for variable selection and building 

prediction models with miRNAs and clinical variables. (C) The approach for evaluating the 

prediction models using patients with unclear remission status.  
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Figure 2  – Adding miRNA information increases model accuracy. (A) Two non-remission 

patients (highlighted as dark red) were misclassified in a model with four clinical variables 

(accuracy = 0.947). One patient was correctly classified when four miRNAs were added 

(accuracy = 0.974). (B) The second patient was correctly classified in a miRNA-only model 

(10 miRNAs, accuracy = 1). Other patients remained correctly classified. 
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Table 4 – Pre- and post-surgery characteristics of the two misclassified patients and predictions shown from LASSO models: with only clinical 

variables, with clinical and miRNA variables, and with ten miRNAs 

 
  Pre-surgery  12-months post-surgery  Remission prediction 

   

T2D Fasting plasma   T2D Fasting plasma    Only clinical Clinical and Only 

Patient Sex Age medication glucose HbA1c  medication glucose HbA1c Remission  variables miRNAs miRNAs 

1 M 63 No 193 8.1  Yes 117 6.3 No  Yes No No 

2 M 66 No 135 6  No 128 5.9 No  Yes Yes No 

 
 

Table 5 – Pre- and post-surgery characteristics of six unclear patients and predictions shown from post-surgery data and LASSO models: with only 

clinical variables, with clinical and miRNA variables, with ten miRNAs, and with 15 miRNAs 

  Pre-surgery  12-months post-surgery  Remission prediction  

   

T2D 

Fasting 

plasma   T2D 

Fasting 

plasma   Based on Only clinical Clinical and Only 10 Only 15 

Patient Sex Age medication glucose HbA1c  medication glucose HbA1c  post-surgery data variables miRNAs miRNAs miRNAs 

A F 63 Yes 137 NA  No NA 6.1  Yes No No No No 

B F 41 Yes 118 6.4  No NA 5.7  Yes Yes Yes Yes No 

C M 43 Yes 127 6  NA 102 5.4  Yes Yes No No No 

D F 49 Yes NA 7.6  No NA NA  Yes No Yes Yes Yes 

E F 54 Yes 135 7.5  Yes NA 5.7  No No No No No 

F M 37 No 110 6.6  NA 95 4.9  Yes Yes Yes No No 
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Figure 3 – Significant Pearson correlations between selected miRNA and clinical variables. 

The analysis was done using R packages Hmisc and ggcorrplot. Nonsignificant correlations 

based on (A) p < 0.05 and (B) adjusted p < 0.05 are set to blank. Red boxes indicate positive 

correlations, whereas blue boxes represent negative correlations.  
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Table 6 – Obesity- and insulin resistance-related pathways regulated by the four predictive 

miRNAs 

 

No. KEGG pathway p value No. of genes No. of miRNAs 

1 Thyroid hormone signaling pathway 9.22E-05 33 3 

2 Lysine degradation 2.04E-04 15 2 

3 FoxO signaling pathway 2.34E-04 41 3 

4 Fatty acid elongation 0.0012 7 3 

5 Prolactin signaling pathway 0.0014 21 3 

6 Focal adhesion 0.0021 52 3 

7 Adherens junction 0.0024 20 2 

8 ECM-receptor interaction 0.0025 19 3 

9 Valine, leucine, and isoleucine biosynthesis 0.0036 2 2 

10 Regulation of actin cytoskeleton 0.0061 50 3 

11 MAPK signaling pathway 0.0102 54 3 

12 p53 signaling pathway 0.0102 21 3 

13 mTOR signaling pathway 0.0133 18 3 

14 Protein processing in endoplasmic reticulum 0.0140 39 3 

15 Hippo signaling pathway 0.0157 32 3 

16 Fatty acid degradation 0.0241 7 2 

17 Endocytosis 0.0263 41 3 

18 PI3K-Akt signaling pathway 0.0370 68 3 

19 HIF-1 signaling pathway 0.0478 26 3 
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Discussion 

This study evaluated miRNAs as predictive biomarkers and  used machine learning 

approaches to select the most potential miRNAs and model building. We found that miRNAs 

might improve T2D remission prediction and are best used with clinical variables. We 

considered all miRNAs because statistically significant variables are not always good predictive 

variables81. 

Our clinical model, based on T2D medication, age, sex, and fasting plasma glucose, 

misclassified two non-remission patients. Both patients had similar pre-surgery conditions: 

they did not take any  T2D medications before surgery and were in their 60s. Patient 1 needed 

T2D medicines after surgery; therefore, this patient had a non-remission status. In contrast, 

patient 2 seemed to be borderline partial remission after surgery. The second patient's fasting 

blood glucose was only three points above the upper limit for partial remission (≤125 mg/dL). 

Therefore, the clinical models correctly predicted that patient 2 could achieve remission after 

surgery. 

Adding miRNA information improved prediction for patient 1. When the miRNAs hsa-

miR-32-5p, hsa-miR-382-5p, hsa-miR-1-3p, and hsa-miR-21-5p were added into the clinical 

model, patient 1  was correctly predicted to have non-remission, and patient 2 was still 

predicted as remission. When 10 or 15 miRNAs were used instead of clinical variables, both 

patients were classified as non-remission. Considering that patient 2 seemed to be borderline 

remission, the model with both clinical variables and miRNAs appears to be the most accurate. 

Data from the six patients with unclear remission status also agree that clinical variables 

are essential in the prediction model. Models with clinical predictors matched the most with 

post-surgery information. Using only miRNAs increased the disagreement between prediction 

and post-surgery data. Although more samples are needed to confirm, this suggests that our 
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miRNA-only models are likely to be an overfit, and clinical variables should be kept in pre- 

diction models. 

When available, miRNA information can help improve prediction for difficult patients 

and provide additional information to potentially imprecise clinical measures. Two out of 

four variables can be inaccurate in our clinical model: fasting plasma glucose and T2D 

medication information. We requested our patients to fast before the OGTT, but we could not 

guarantee that they genuinely fasted. T2D medication was obtained through the patient 

questionnaire, which is subject to recall bias. 

Our prediction models can help decision-making for newly diagnosed T2D patients who 

qualify for SG. Some of our patients were unaware of their T2D status and were diagnosed 

during their pre-surgery visit, which might explain the relatively low percentage of patients 

taking T2D medication. We found that most patients who did not report taking T2D 

medication achieved remission after SG, but not everyone. SG is a simpler surgery procedure, 

but it has a lower T2D remission rate than Roux-en-Y gastric bypass (RYGB)14,31. Therefore, 

deciding on bariatric surgery for new T2D patients is not straightforward. Our prediction models 

might help predict whether SG would result in rapid T2D remission or not for these patients. 

Previous prediction models, which used similar clinical variables, predicted remission in 

SG patients with sensitivity and specificity up to 0.92 and 0.83, respectively34. Our clinical 

model with four variables achieved sensitivity and specificity of 0.83 and 1, respectively, and 

adding four miRNAs increased the sensitivity to 0.917. Confirmation in external cohorts is 

vital to confirm the usefulness of our models. 

To our knowledge, these four serum miRNAs (hsa-miR-32-5p, hsa-miR-382-5p, hsa-

miR-1-3p, and hsa-miR-21-5p) have not been studied as predictive biomarkers for T2D 

remission after bariatric surgery. However, studies have reported associations between these 

miRNAs with obesity and T2D. The miRNA hsa-miR-382-5p is involved in cholesterol 
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homeostasis82. Plasma and serum levels of hsa-miR-21-5p are associated with T2D83–85, as 

well as with obesity61,86. The miRNA hsa-miR-32-5p is also associated with T2D87 and 

obesity87,88. Our pathway analysis identified 19 obesity- and T2D-related pathways regulated 

by these miRNAs, including the mechanistic target of rapamycin (serine/threonine kinase) 

(mTOR), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase-protein 

kinase b (PI3K-Akt), fatty acid elongation, and degradation pathways. The miRNA hsa-miR-

1-3p has regulatory roles in cardiac muscle tissues and tumor suppressors in various cancers89. 

It is also dysregulated in pancreatic cancer patients90. 

These miRNAs have been studied in bariatric surgery patients to measure differential 

expression before and after surgery68. An RYGB  study reported that plasma hsa-miR-32-5p and 

hsa-miR-21-5p were significantly reduced 9 and 12 months after surgery71. However, another 

RYGB study reported an increase of plasma hsa-miR-21-5p 12 months after surgery61. The 

miRNAs hsa-miR-1-3p and hsa-miR-382-5p were not significantly differentially expressed after 

RYGB71. It appears that predictive miRNAs do not need to be differentially expressed after 

surgery. However, these studies were primarily done in RYGB patients, and more studies with 

SG patients are needed. 

Our study suggests that miRNAs could potentially predict T2D remission after the 

intervention. Our findings agree with a recent study identifying predictive miRNAs for T2D 

remission after diet intervention91. A recent study also reported predictive serum miRNAs for 

weight loss after bariatric surgery72. The set of miRNAs is different from these studies, which 

might reflect the study population. Our study focused on patients with T2D and obesity, 

whereas the other study's patients had BMI around 30 as well as coronary heart disease. 

Nevertheless, our study has limitations, including the small number of participants and limited 

external validation. Owing to sample size limitations, we simplified T2D and remission groups 

as dichotomous traits. Future studies could also investigate T2D subtypes based on β-cell 
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function and insulin resistance measures92 and include other diabetes-related variables such as C-

peptide and T2D duration. Some of the patients were unaware of their T2D status, so we could 

not obtain an accurate T2D  duration for these patients. Patients with differing risk profiles might 

have different remission rates after surgery. Another limitation is that we focused on SG without 

comparing other surgery types like RYGB. RYGB has better long-term T2D remission rates14,31, 

but only 8% of our BBSS patients underwent RYGB. Due to study size limitations, we could 

not compare miRNA's predictive value between these two surgery types adequately. It would 

also be interesting to see whether miRNAs can differentiate between the original ASMBS 

remission groups ("complete remission,” "partial remission,” "improvement,” "unchanged," and 

"recurrence"). Additionally, we considered only 179 miRNAs that were included in the 

quantitative PCR profiling platform for serum samples. Using larger profiling platforms such as 

small RNA sequencing might uncover more or better predictive miRNAs. 

In conclusion, we identified four miRNAs (hsa-miR-32-5p, hsa-miR-382-5p, hsa-miR-1-

3p, and hsa-miR-21-5p) that might complement clinical models in predicting T2D remission 

after SG. Further studies in much larger data are needed to confirm the utility of these serum 

miRNAs as predictive biomarkers. Due to the sample size, our study might be considered a 

pilot study. However, our results provide insights for future research. For example, the four 

serum miRNAs could be studied further to understand molecular subtypes of T2D that separate 

remission and non-remission patients. 
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Conclusions  

1. Four serum miRNAs (hsa-miR-32-5p, hsa-miR-382-5p, hsa-miR-1-3p, and hsa-miR-21-

5p) that might predict T2D remission 12 months after SG were identified. 

2. These miRNAs are involved in pathways related to obesity and insulin resistance. 

3. Biomarker research could focus on these miRNAs and validate them in larger cohorts to 

evaluate their predictive value. 

4. The miRNAs could also be studied further to understand molecular subtypes of T2D 

patients with obesity. 
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