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ABSTRACT

Bariatric surgery is an efficient treatment for the excess body weight in patients with severe
obesity and resolving obesity-related comorbidities, including Type 2 Diabetes (T2D). Sleeve
gastrectomy (SG) is the most common method among bariatric surgery procedures worldwide,
including in Poland. SG is less complicated, safer, and delivers comparable weight-loss rates
compared to other procedures. However, not all SG patients with T2D experience remission
after surgery, so patient selection is valuable in clinic. Most prediction models were mainly
built for procedures other than SG and used mainly clinical variables. There is increasing
interest in using microRNAs (miRNAS) as biomarkers. Studies have shown differential changes
of miRNA profile after bariatric surgery and associations between miRNA with weight loss
after surgery. However, there are no studies so far on the predictive value of miRNA for T2D
remission after bariatric surgery.

The aim of this doctoral dissertation is to profile pre-surgery serum miRNA from sleeve
gastrectomy patients with T2D and develop prediction models using baseline clinical and
miRNA data to predict T2D remission after surgery.

Before SG, clinical data and fasting serum samples were collected from 46 T2D patients.
Serum miRNAs were profiled using the Serum/Plasma miRCURY LNA miRNA Focus PCR
Panel (QIAGEN), and two patients were excluded due to sample hemolysis. Remission status
was determined 12 months after SG. Six patients with unclear remission status were set aside
for model evaluation. Model building was done with the remaining 38 patients. Variable
selection was done using different approaches, including Least Absolute Shrinkage and
Selection Operator (LASSO). LASSO was also used for model building. Prediction models
were compared and then assessed in the validation set.

A total of 26 out of 38 patients achieved T2D remission 12 months after SG. The
prediction model with only clinical variables misclassified two patients, which were correctly
classified using miRNAs. Two miRNA-only models achieved an accuracy of one but performed
poorly for the validation set. The best mMiRNA model was a mixed model (accuracy: 0.974)
containing four miRNAs (hsa-miR-32-5p, hsa-miR-382-5p, hsa-miR-1-3p, and hsa-miR-21-
5p) and four clinical variables (T2D medication, sex, age, and fasting blood glucose). These
MiRNAs are involved in pathways related to obesity and insulin resistance.

The results suggest that four serum miRNAs might be predictive biomarkers for T2D
remission 12 months after SG, but further validation studies are needed.
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STRESZCZENIE

Chirurgia bariatryczna jest skutecznym sposobem leczenia nadmiernej masy ciala u pacjentow
z otytoscig olbrzymig i leczenia chorob wspotistniejacych z nig zwigzanych, w tym cukrzycy
typu 2 (T2D). Rekawowa resekcja zotadka (SG) jest najczestsza metoda wsrdd zabiegow
chirurgii bariatrycznej na catym $wiecie, w tym w Polsce. SG jest mniej skomplikowana,
bezpieczniejsza i zapewnia porownywalne wskazniki utraty wagi, w poréwnaniu z innymi
procedurami. Jednak nie wszyscy pacjenci chorujagcy na T2D, poddawani zabiegowi
doswiadczaja remisji po operacji. Dlatego tez prawidlowa selekcja pacjentow, ktorzy
najbardziej skorzystaja na zabiegu, jest tak istotna w praktyce klinicznej. Wigkszo$¢ modeli
predykcyjnych zostala zbudowana gtownie dla procedur innych niz SG 1 wykorzystywata
gldwnie zmienne kliniczne. Ro$nie zainteresowanie wykorzystaniem czgsteczek mikroRNA
(miRNA) jako biomarkerow. Badania wykazaly zrdéznicowane zmiany profilu miRNA po
operacji bariatrycznej oraz zwiagzki miedzy miRNA, a utratg masy ciala po operacji. Jednak jak
dotad nie ma badan dotyczacych wartosci predykcyjnej stezenia miRNA dla remisji T2D po
operacji bariatrycznej.

Celem pracy doktorskiej jest opracowanie modeli predykcyjnych z wykorzystaniem
wyjsciowych danych klinicznych i profilu ekspresji miRNA w celu przewidywania remisji T2D
po operacji.

W badaniu wykorzystano dane kliniczne i probki surowicy pobranej na czczo od 46
pacjentow chorujacych na T2D. Wykonano profilowanie czasteczek miRNA w surowicy z
wykorzystaniem panelu “Serum/Plasma miRCURY LNA miRNA Focus PCR Panel”
(QIAGEN) i dwoch pacjentéw wykluczono z powodu hemolizy probki. Status remisji
okreslono 12 miesigcy po zabiegu SG. Szeséciu pacjentéw z niejasnym stanem remisji zostalo
wykluczonych z oceny skutecznos$ci modelu. Budowa modelu zostata wykonana z pozostatymi
38 pacjentami. Doboru zmiennych dokonano przy uzyciu réznych podejs¢, w tym metody
LASSO, (ang. Least Absolute Shrinkage and Selection Operator). Modele prognostyczne
zostaly porownane, a nast¢pnie ocenione w grupie walidacyje;.

Lacznie 26 z 38 pacjentdw osiggneto remisje T2D po 12 miesigcach od zabiegu SG.
Model predykcyjny zawierajacy tylko zmienne kliniczne btednie sklasyfikowat dwoch
pacjentow, ktorzy zostali prawidtowo sklasyfikowani przy uzyciu modelu zawierajagcego
miRNA. Dwa modele zawierajagce tylko miRNA osiggnety doktadno$¢ rowng jeden, ale
wypadly stabo w zestawie walidacyjnym. Najlepszym modelem miRNA byt model mieszany
(doktadnosé: 0,974) zawierajacy cztery czasteczki miRNA (hsa-miR-32-5p, hsa-miR-382-5p,
hsa-miR-1-3p i hsa-miR-21-5p) oraz cztery zmienne kliniczne (leki stosowane w leczeniu T2D,
pte¢, wiek 1 stezenie glukozy we krwi na czczo). Zidentyfikowane czgsteczki miRNA biorg
udziat w szlakach zwigzanych z otytos$cig 1 insulinoopornoscia.

Wiyniki sugeruja, ze zidentyfikowane cztery czasteczki miRNA w surowicy moga by¢
biomarkerami predykcyjnymi dla remisji T2D 12 miesigcy po zabiegu SG. W celu
potwierdzenia ich potencjalu do zastosowania klinicznegopotrzebne sa dalsze badania
walidacyjne.

SEOWA KLUCZOWE: rekawowa resekcja zoladka; cukrzyca typu 2; mikroRNA; remisja
T2D; modele predykcyjne
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Introduction

Obesity, defined as BMI of >30 kg/m?, is a chronic disease with multiple health consequences®.
Globally, about 604 million adults had obesity in 2015. The global prevalence of severe obesity,
defined as BMI >40 kg/m? or >35 kg/m? in the presence of comorbidities?, was 0.64% (0.46—
0.86) in men and 1.6% (1.3-1.9) in women?®. The health consequences of obesity are significant.
Studies have reported over 230 comorbidities and complications of obesity, including
hypertension, cardiovascular diseases, and type 2 diabetes mellitus (T2D)*. Obesity is currently

the number one cause of preventable disease and disability, surpassing smoking®.

Specifically for T2D, increasing body weight is strongly associated with increased T2D
risk>°. Obesity can be attributed to more than 80 percent of T2D cases and is related to many
diabetes-related deaths®. A study spanning over thirty years in the US found that BMI accounted
for a 50% and 100% increase in T2D prevalence in men and women, respectively®. BMI
contributed more than age and race/ethnicity to the increase in T2D prevalence®®. Additionally,
nurses with a baseline BMI of >35 kg/m? had a 100-fold increased risk of incident T2D over
14 years compared to nurses with BMI <22 kg/m?!, So, it is not surprising that weight loss
prevents progression to T2D and even T2D remission!?. Even modest weight loss improves

glycemic control in patients with T2D*2,

There are many different approaches to obesity therapy, such as dietary changes,
increased physical therapy, and pharmacologic therapy?. However, those with severe obesity
require aggressive treatment for effective weight loss, including multi-component behavioral

intervention and bariatric surgery?.

Long-term weight loss at a great magnitude can be achieved with bariatric surgery, which
is a collective term for surgical methods to treat obesity?. Bariatric surgery is reserved for those

with a BMI >40 kg/m2, or a BMI of > 35 kg/m2 with at least one serious comorbidity, who
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have not achieved weight loss with other therapies®. Weight loss from bariatric surgery can be
significant, reaching 40% weight loss at 12-18 months post-surgery?. Bariatric surgery may also
alter the body's adipose tissue "set point"”, resulting in long-term weight loss and low recidivism
rates (the regaining of lost weight)?. Additionally, bariatric surgery may reduce obesity-related

14-16 and prevent obesity-related diseases!’. The Swedish Obese Subjects study

comorbidities
reported a reduction in incident rates of T2D, hypertension, and dyslipidemia in the bariatric
surgery group compared to the conventional weight loss treatment group after 10-20 years of
follow-up®®. In the case of T2D, glucose control via surgical treatment was reported to be better
than medical therapy 21, Recently, bariatric surgery has been endorsed as a treatment for

obese diabetic patients by the International Diabetes Federation, American Diabetes

Association, and American College of Surgeons®®.

Bariatric procedures can be grouped into three methods: restriction, malabsorption, and a
combination of both??. Restrictive procedures limit the stomach's capacity through different
approaches. The most common restrictive procedure is sleeve gastrectomy (SG). This method
also has an additional hormonal effect on hunger control where SG decreases ghrelin levels and
increases GLP-1 and PYY levels, thus promoting less hunger?>?3. Malabsorption methods
modify the small intestine to decrease the effectiveness of nutrient absorption. Although
malabsorption methods deliver superior weight loss, these methods cause significant
malnutrition and micronutrient deficiencies??. Other methods, such as Roux-en-Y gastric
bypass (RYGB) and biliopancreatic diversion with duodenal switch, are both restrictive and
malabsorptive. In RYGB, the effects are delivered through a small gastric pouch and small

bowel reconfiguration combination.

Globally, the top two bariatric surgery methods are RYGB and SG. In 2003, RYGB was
performed at about 65% of all bariatric procedures, but the percentage decreased to 47% in

2011222426 In 2016, SG became the most commonly performed procedure globally, including
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Poland?®2?°, SG is a less complicated procedure, is less drastic than other methods***%-32, and
delivers comparable weight loss rates'*>%, However, SG has lower T2D remission rates
compared to RYGB 3!, Long-term T2D remission for SG was relatively low in two studies:
35.3% for Taiwanese patients and 28% for American patients after five years of surgery3?,
but another study reported a higher T2D remission rate of 66% five years after SG. Therefore,

identifying patients who can benefit the most from SG is valuable for effective treatment.

Different prediction models have been developed to predict T2D remission after bariatric
surgery 313440 These models use clinical predictors, such as age, sex, BMI, HbAlc, T2D
medication, T2D duration, and fasting glucose levels®:*%, However, most models were
developed using cohorts of surgery methods other than SG or a limited number of SG patients*.
A 2019 study found that these models overestimated diabetes remission in SG patients with
varying degrees®*. Better prediction models are needed for SG patients. The inclusion of
biomarkers might improve diabetes remission models, especially since molecular biology

technologies are becoming more affordable and frequently used in clinics.

There is increasing interest in using biomarkers as predictive variables for bariatric
surgery outcomes but still limited for T2D remission. A study demonstrated a significant weight
loss difference after SG between different genotypes of the Single Nucleotide Polymorphism
(SNP) rs9930506 on an obesity-associated gene (FTO)*.. However, a study on another SNP on
FTO (rs9939609) did not observe any associations with weight loss after SG*2. Similarly, a
genetic risk score of SNPs related to BMI and waist/hip ratio did not predict weight loss after
obesity surgery (RYBG and SG)*. To the author's best knowledge, only one genetic biomarker
study for T2D remission has been done: a 2016 study used structural genetic variants as
predictive biomarkers for T2D remission after RYGB*. Epigenetic factors are yet to be
evaluated but are interesting potential biomarkers. Epigenetic machinery, such as DNA

methylation, histone modifications, and non-coding RNAs can respond to external
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environmental cues by altering gene expression levels without changing the DNA sequence.
One particular epigenetic factor that is gaining interest is microRNAs (miRNAs). These small
non-coding RNAs (21-22 nucleotides) are important for regulating gene expression post-
transcriptionally. Single-stranded miRNA binds to a complementary target messenger RNA
(mRNA) to disrupt translational processes*®*°. A single miRNA can have multiple targets and
regulate many different biological pathways>® 2. Studies have reported miRNAs that regulate
obesity-related pathways®*>®, and miRNA dysregulation is linked to obesity and its
comorbidities®*®°, Additionally, serum miRNAs are highly stable and resistant against harsh
conditions, such as ribonuclease A digestion, frequent freeze-thaw cycles, and pH changes®®,

making miRNAs promising biomarkers for clinical use.

In recent years, good associations between microRNAs (miRNASs) and bariatric surgery
outcomes were reported®”®, Recent studies demonstrated a significant change in serum
miRNA expression before and after RYGB in T2D patients®®"t. A total of 17 animal model
and human studies have been done on miRNA and bariatric surgery by 2019, There are some
common findings despite differences in study design, surgery procedures, and profiling
methods. Fourteen miRNAs had the same direction of modulation after surgery in at least two
studies (downregulated: hsa-miR-93-5p, hsa-miR-106b-5p, hsa-let-7b-5p, hsa-let-7i-5p, hsa-
miR-16-5p, hsa-miR-19b-3p, hsa-miR-92a-3p, hsa-miR-222-3p, hsa-miR-142-3p, hsa-miR-
140-5p, hsa-miR-155-5p, rno-miR-320-3p; upregulated: hsa-miR-7-5p, hsa-miR-320c)%. A
recent publication in 2022 reported good predictive performance on preoperative serum ratios
of hsa-miR-328-3p/hsa-miR-31-5p or hsa-miR-181a-5p/hsa-miR-31-5p and BMI on excess
weight loss > 55% at six months after SG or gastric bypass surgery’?. However, the predictive

value of miRNAs for T2D remission has not been explored before.

High-throughput profiling methods have made detecting hundreds of biomarkers from a

biological sample easier, but the number of study participants is often small. This high-

13



dimensional situation is problematic for traditional statistical models’®. One approach to
handling such situations is regularization, such as LASSO (least absolute shrinkage and
selection operator)”®"°. LASSO adds a shrinkage penalty to least square estimates, and the
shrinkage penalty is tuned using the parameter A’4. When A = 0, the penalty term has no effect,
and the regression will produce the least squares estimates’®. When A is large enough, some

coefficient estimates will be equal to zero, thus performing variable selection’.

Selecting a good value for LASSO's tuning parameter is important and is done using
cross-validation. Cross-validation is also used to estimate test set error when the number of
samples is too small for the typical validation set approach™. Typically, samples are separated
randomly into a training set and a test or validation set. However, this creates a situation where
only a subset of observations (the training set) is used to build the model. Statistical methods

tend to perform worse when trained on fewer observations’®.

Additionally, the test error rate can be highly variable, depending on the training-test split
process’®. Cross-validation addresses these two issues, and there are two types of cross-
validation: leave-one-out cross-validation (LOOCV) and k-fold cross-validation (k-fold CV).
LOOCYV sets aside a single observation as the validation set, and the remaining observations
are used to train the model. The procedure is repeated for n times (n = number of observations
or patients), and the final error rate estimate is the average error rate from each round”. So,
LOOCYV uses as many observations as possible for building the model, but the process can be

computationally expensive.

An alternative to LOOCYV is k-fold CV. This approach randomly divides the observations
into k groups equally and randomly. One group, or fold, is set aside for validation, while the
remaining observations are used to build the model. The method is repeated k times (k = number

of folds or groups) then the error rates are averaged to get the final error rate estimate’.
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Aims

This doctoral dissertation studies the predictive value of pre-surgery clinical variables and
serum miRNAs for predicting T2D remission 12-months after SG. A machine learning

approach was used to select variables, build, and evaluate prediction models.

A meta-analysis of microRNA profiling studies for bariatric surgery has been described
in the review article (I). At the time of publication, there were no miRNA studies for predicting
bariatric surgery outcomes. Thus, the presented articles are focused on describing miRNA
profile changes after bariatric surgery. Despite differences in study design, some common

findings have been described in the Introduction section.

Prediction modeling using microRNAs and clinical data was reported previously by the
PhD candidate in the original article (I1). The authors aimed (1) to profile pre-surgery serum
miRNA from sleeve gastrectomy patients with T2D and (2) to develop prediction models using
baseline clinical and miRNA data to predict T2D remission after surgery. Clinical variables and

miRNAs' predictive value were described, compared, and presented in the article (11).
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Materials and methods

Study participants

Figure 1 illustrates an overview of the study design. Initially, between 2016 to 2019, 321 Polish
patients with obesity were recruited to the Bialystok Bariatric Surgery Study (BBSS;
ClinicalTrials.gov Identifier: NCT04634591). A subset of 46 patients with T2D (based on the
American Diabetes Association criteria’®, which matches the Diabetes Poland criteria’”)
underwent Sleeve Gastrectomy and had follow-up data 12 months post-surgery. The inclusion
criteria for surgery was BMI >= 40 kg/m2 or BMI >= 35 kg/m2 with comorbidities. The
exclusion criteria include prior bariatric surgery, substance abuse, uncontrolled psychiatric
illness, expected lack of compliance, or advanced cancer. Baseline clinical data and fasted
serum samples were collected two to four weeks prior to surgery. Two patients were then
excluded due to hemolysis observed in serum sample. T2D remission status was determined
using the American Society of Metabolic and Bariatric Surgery (ASMBS) Criteria’®, based on
T2D medication status, HbAlc, and fasting glucose 12 months after surgery. Binary remission
status was created: patients with complete and partial remission were grouped into Remission,
while patients with improvement, unchanged, and recurrence were grouped into Non-remission.
Six patients had unclear remission status due to missing information post-surgery. These six
patients were held out for model evaluation. The remaining 38 patients with clear remission
status were used for variable selection and building classifiers. All participants provided
informed consent before the study. The study was conducted in accordance with the Declaration
of Helsinki, and the protocol was approved by the Ethics Committee of the Medical University

of Biatystok (project identification code: R-1-002/546/2015)"
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Sample preparation and miRNA extraction

Serum miRNA profiling was done from baseline (before the surgery) serum samples. Blood
samples were collected in Sarstedt S-Monovette tubes (Sarstedt, Inc., Numbrecht, North Rhine-
Westphalia, Germany) with separator gel. The samples were allowed to clot for at least 30
minutes and were then centrifuged for 10 minutes at 2,500 rpm. Serum samples were

immediately stored at —80°C until use.

RNA was isolated using the miRNeasy Serum/Plasma Advanced Kit (QIAGEN, Hilden,
Germany). Three RNA spike-ins (UniSP2, UniSP4, and UniSP5) were added to the kit's "RPL
buffer" as RNA isolation controls. Serum volumes of 200 uL. were used for isolation, and 20
uL of nuclease-free water was used for elution. A no-template sample (nuclease-free water)

was also included to evaluate RNA isolation quality.

Quiality control of miRNA extraction

The miRCURY locked nucleic acid (LNA) miRNA QC PCR Panel (QIAGEN) was used to
assess MiRNA quality, monitor complementary DNA (cDNA) synthesis, evaluate hemolysis,
and assess polymerase chain reaction (PCR) efficiency. For this quality control (QC) panel, two
uL of miRNA elute was used for ten puL of reverse transcription (RT) reaction using the
miRCURY LNA RT Kit (QIAGEN). Two spike-ins were used for cDNA synthesis (UniSp6
and cel- miR-39). A total of 1.5 uL. of cDNA was used for the QC panel. Two samples were
later excluded because of hemolysis (final n = 44), as indicated by a difference in cycle
threshold (Ct) values between hsa-miR-23a-3p and hsa-miR-451a of more than five®. PCR was
done using the Roche LightCycler 480 Instrument (Roche, Basel, Switzerland) with SYBR

Green dye.

MiRNA profiling
The Serum/Plasma miRCURY LNA miRNA Focus PCR panel (Qiagen, CA, USA) was used

for profiling, and PCR was done using the Roche LightCycler 480 Instrument with SYBR
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Green dye. Profiling was done with a 96-well plate format. For this panel, four L of miRNA
elute was used for 20-uL cDNA synthesis, along with the two spike-ins for cDNA synthesis.
The whole cDNA reaction was used for profiling. No-template controls were also used to

evaluate background miRNA levels.

Data pre-processing

Raw miRNA data was pre-processed using the GeneGlobe Data Analysis Center (Qiagen;
geneglobe.giagen.com) to remove miRNAs below a Ct cut-off (Ct = 35) and apply interplate
calibration. The processed data was then normalized using a global mean normalization, and

there were no missing values for miRNAs.

A total of 43 baseline clinical variables were collected from patients, including blood
biochemical parameters, blood morphology, and anthropometric measurements. A total of 26
clinical variables with missingness less than 10% were selected, and median imputation was

used for missing values. The total number of clinical and miRNA variables was 205.

Variable selection
Ten unique variable sets were created: six sets with only miRNA variables, two with only
clinical variables, and two sets with miRNA and clinical variables. Variables were normalized

to obtain z scores.

Out of the 44 patients with miRNA data, six patients with unclear remission status were
set aside for model evaluation. Therefore, 38 patients with clear remission status were used for

variable selection and building classifiers.

Selecting serum miRNA variables
Six miRNA-only variable sets were created using different methods. One set contains all 179
mMiRNAs, another includes miRNAs from statistical testing, and four other sets contain LASSO-

selected miRNAs.
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miRNA selection using statistical significance and fold change
Fold change is the ratio of relative normalized miRNA expression between remission groups.
Unpaired t tests were used to calculate p values. Four miRNAs with p < 0.05 and fold

regulations of at least 1.5 were selected in this variable set.

Variable selection with LASSO

LASSO’® with repeated 10-fold cross-validation (500 repeats) was built using all 179 miRNA:s.
A total of 20 miRNAs had nonzero coefficients, and they were ranked based on their
importance. The top five, ten, fifteen, and all nonzero miRNAs were selected as four sets of

LASSO-selected miRNAs.

Selecting pre-surgery clinical variables

Two sets of clinical variables were created: one set contains all 26 variables, and another has
LASSO-selected variables. The LASSO selection process is the same as that for miRNAs.
Repeated cross-validation with ten folds and 500 repeats was done using all 26 clinical

variables, and then the resulting nonzero variables were selected.

Selecting serum miRNA and clinical variables

Two sets of miRNA and clinical variables were created: one set contains all available variables
(205 variables), and another has LASSO-selected variables. The LASSO selection process was
done using all variables with the same repeated cross-validation approach, and the nonzero

variables were selected.

Prediction models
Ten LASSO models were built with each variable set. A leave-one-out cross-validation
approach was used. Model performances were obtained using caret and epiR in R (R

Foundation, Vienna, Austria), and models were compared based on their accuracy.
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Model evaluation using six patients with unclear remission status

Remission labels were determined using available post-surgery clinical measures. Label
decision was first made based on the discontinuation of T2D medicines. Then, HbAlc and
fasting glucose information were considered. For prediction, we first applied the same median
imputation and Z score scalar used for the model-building data. Then prediction was made using
four models: one clinical-only model, one clinical and miRNA model, and two miRNA models.

We then compared the prediction with their remission labels.

Statistical testing

Statistical testing was done to compare remission groups: chi-squared test and Kruskal-Wallis
for categorical and continuous clinical variables, respectively, and unpaired Student's t-tests for
miRNA profiles. Pearson correlation was calculated between clinical variables and miRNAs
hsa-miR-32-5p, hsa-miR-382-5p, hsa-miR-1-3p, and hsa-miR-21-5p. False discovery rate
(FDR) was done for multiple testing correction for all statistical testing. For the correlation
analysis, two plots for unadjusted and adjusted p values were made using ggcorrplot package

in R (R Foundation).

Pathway analysis

Pathway analysis was done for miRNAs hsa-miR-32-5p, hsa-miR- 382-5p, hsa-miR-1-3p, and
hsa-miR-21-5p. The DIANA miRPath version 3 software (http://www.microrna.gr/miRPathv3)
was used to identify experimentally reported target genes and evaluate the Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways.
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Results

Patient demographics and miRNA profiles

Six clinical variables were significantly associated with remission after SG: T2D medication;
age; HbAlc; and fasting plasma glucose, as well as plasma glucose 30 and 60 minutes after oral
glucose tolerance test (OGTT; Table 1). The remission group had a much lower proportion of
patients taking diabetes medication before surgery (remission vs. non-remission: 12% vs.
83.3%, adjusted p = 0.003). The remission group was also significantly younger and had lower
plasma glucose and HbAlc. Additionally, the remission group had higher plasma insulin and
took fewer medications for chronic diseases, but the relationships were not significant after
FDR (Table 1). A total of 179 circulating miRNAs were profiled from serum samples collected
before surgery. None of the miRNAs was significant between remission and non-remission
groups after multiple testing correction using FDR (Table 2). However, eight miRNAs had
unadjusted p < 0.05, and four of them had a fold regulation of at least 1.5 (remission vs. non-
remission group: upregulation = hsa-miR-382-5p, hsa-miR-409-3p; downregulation = hsa-

miR-375, hsa-miR-1-3p, respectively).

Variable selection and modeling results

Ten variable sets were created based on different variable selection processes (Table 3). One
set for miRNAs contained the four significantly differentially expressed miRNAs (GeneGlobe
MIiRNAs: hsa-miR-382-5p, hsa-miR-409-3p, hsa-miR-375, and hsa-miR-1-3p). LASSO
selected 20 out of 179 miRNAs after repeated cross-validation, including three out of 4
significant miRNAs (hsa-miR-382-5p, hsa-miR-375, and hsa-miR-1-3p). LASSO selected four
out of twenty-six clinical variables: T2D medication, age, fastingplasma glucose, and sex.

When all variables were provided, LASSO chose the same four clinical variables (T2D
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medication, sex, age, andfasting plasma glucose) and four miRNAs (hsa-miR-1-3p, hsa-miR-

21-5p, hsa-miR-32-5p, and hsa-miR-382-5p; Table 3, set 4).

Among the ten prediction models, classifiers with miRNA variables performed best.
Models with 10 or 15 miRNAs achieved an accuracy of 1 (95% CI: 0.91-1; Table 3). Models
with only clinical variables misclassified two non-remission patients, with an accuracy of 0.947
(95% CI: 0.82-0.99; Tables 3 and 4). When four miRNAs were added into the clinical model,
patient 1 was correctly predicted but not patient 2 (Figure 2A; Table 4). Patient 2 was later
correctly classified in the miRNA-only models, and no other misclassifications were found

(Figure 2B; Table 4).

Evaluating prediction models using six patients with unclear remission status
Four classifiers were selected for evaluation: a clinical-only model, a mixed model with
miRNA and clinical variables, and two miRNA-only models (Table 5). Models with clinical
variables agreed the most with post-surgery data (Table 5). All models predicted patient
A as non-remission,but post-surgery data suggested remission. All miRNA models predicted
non-remission for patient C. Post-surgery values were within the remission group, but this
patient had missing medication information. The miRNA-only models had an increasing

disagreement with post-surgery data, indicating overfitting with the training data.

Evaluating the four predictive miRNAs (hsa-miR-32- 5p, hsa-miR-382-5p,
hsa-miR-1-3p, hsa-miR-21-5p)

Four miRNAs that improved prediction for clinical models had significant correlations with

glucose measures and HbA1c, but not with other clinical measures (Figure 3). The miRNA hsa-

miR-382-5p was significantly positively correlated with HbAlc (r = 0.432) and plasma glucose

(r = 0.485 for fasting and r = 0.359 for 30 minutes during OGTT). The relationship with fasting

plasma glucose was maintained after FDR (Figure 3). There were other significant correlations

between miRNA and clinical variables, but they were not significant after FDR; for example,
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fasting plasma glucose with hsa-miR-32-5p (r = —0.354) and hsa-miR-21-5p (r = —0.346), as
well as hemoglobin cell count with hsa-miR-21-5p (r = —0.456). The miRNA hsa-miR-1-3p
was not significantly correlated with any of the selected clinical variables. The miRNA hsa-
miR-32-5p was positively correlated with hsa-miR-1-3p (r = 0.393) and hsa-miR-21-5p (r =
0.362) but was no longer significant after FDR.

Pathway analysis was done using the DIANA miRPath version 3 software for these
miRNAs. Three out of four miRNAs regulated 39 KEGG pathways, including 19 signaling
pathways related to obesity and insulin resistance (Table 6). There was no information for hsa-

miR-1-3p in this database. Within these 19 pathways, hsa-miR-32-5p regulated 253 genes, hsa-

miR-21-5p regulated 330 genes, and hsa-miR-382-5p regulated 73 genes.
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Table 1 — Baseline clinical data from patients measured before surgery

Variable

No. of patients

Age at time of SG (years)
Diabetes medication before SG (n = 37)
Fasting blood glucose levels before SG (mg/dl)

Plasma glucose levels measured at 60 minutes
during OGTT (n = 35) (mg/dl)
Haemoglobin Alc before SG (%)

Plasma glucose levels measured at 30 minutes
during OGTT (n = 35) (mg/dl)

Plasma insulin levels measured at 30 minutes
during OGTT (n = 35) (IU/ml)
Plasma insulin levels measured at 120 minutes
during OGTT (n = 35) (IU/ml)
Number of chronic disease medications before

SG (two or more)

Plasma insulin levels measured at 60 minutes
during OGTT (n = 35) (IU/ml)

Plasma glucose levels measured at 120 minutes
during OGTT (n = 35) (mg/dl)
High-density Lipoprotein levels before SG

(mg/dl)

Low-density Lipoprotein levels before SG

(mg/dl)

Bilirubin levels before SG (mg/dl)

Number of chronic diseases before SG (one or

more)
Male sex

Fasting blood insulin levels before SG (1U/ml)
Cholesterol levels before SG (mg/dl)

Platelet blood count before SG (1073/ul)
Percent body fat before SG (%)

C-reactive protein levels before SG (mg/l)
White blood cell count before SG (1073/ul)
Red blood cell count before SG (1076/ul)
Hemoglobin cell count before SG (g/dl)
Triglyceride levels before SG (mg/dl)

BMI before SG (kg/m2)

Remission

26
455 (38.25;54)

3 (12%)

132.5 (123.25;143.5)

248 (224.75;282.25)
6.4 (5.9;6.88)
232.5 (194.5;239)

128.08
(109.6;173.73)

121.86
(82.54;243.84)

12 (46%)

159.18
(146.12;231.63)

194.5
(159.75;218.25)

39.5 (35;45)
118.5 (97.12;146)
0.47 (0.36;0.59)
19 (73%)

16 (61.5%)

34.55 (29.53;53.57)
190 (165.5;214)
224 (203.75;263)
47.1 (44.77;50.58)
5.89 (2.62;10.53)
7.95 (6.65;9.07)
4.98 (4.7;5.26)
14.35 (13.25;15.05)
146 (131.25;231)
46.87 (43.33;50.77)

Non-remission

12
58 (56.25;65.25)
10 (83.3%)

1545
(146.75;178.75)

298 (283;315)
7.1 (6.65;8.25)
248 (235;271)

74.08
(61.61;126.53)

90.56
(52.09;105.67)

12 (100%)

123.27
(73.27;168.24)

225 (183;243)
445 (37.75;53.5)

103.95
(82.83;133.75)

0.38 (0.3;0.57)
12 (100%)

10 (83.3%)

34.72 (27.55;43.52)
184 (152.5;203.25)
209.5 (190;283.75)
49.4 (44.83;51.4)
3.92 (1.69;10.24)
8.2 (7.5;8.62)

5.07 (4.82;5.29)
14.45 (13.3;15.05)
163 (126;225)
45.87 (43.65;52.75)

p value

0.002
0.005
0.011
0.031
0.045
0.017
0.213
0.186
0.209
0.272
0.307
0.084

0.333
0.396
0.387
0.414
0.46

0.48

0.753
0.777
0.826
0.888
0.975

p value

(adj)

0.004
0.003
0.004

0.012
0.021
0.042
0.091
0.118
0.216
0.395
0.395
0.395
0.471
0.499
0.546

0.546
0.567
0.567
0.567
0.594
0.594
0.879
0.879
0.895
0.923
0.975

Note: Values show the median (first;third quartiles) or the number of patients and percentages. P values are shown for the ¥ test (categorical
variables) and Kruskal-Wallis test (continuous variables). Rows with p < 0.05 are shown in bold. Multiple testing correction was done using the
false discovery method. If not otherwise stated, n = 38.
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Table 2 — Comparing miRNA profiles between the Remission and Non-remission groups.

miRNA Fold change Fold regulation p value p value (adj)
hsa-miR-382-5p 1.800 1.800 0.002 0.420
hsa-miR-1-3p 0.620 -1.610 0.015 0.819
hsa-miR-375 0.630 -1.580 0.017 0.819
hsa-miR-409-3p 1.530 1.530 0.037 0.824
hsa-miR-28-5p 1.400 1.400 0.024 0.819
hsa-miR-28-3p 1.330 1.330 0.027 0.819
hsa-miR-27a-3p 1.300 1.300 0.027 0.819
hsa-miR-27b-3p 1.260 1.260 0.032 0.823
hsa-miR-376¢-3p 1.540 1.540 0.054 0.851
hsa-miR-584-5p 1.410 1.410 0.070 0.851

Note: Top ten miRNAs with the smallest p-values are shown. The miRNAs with fold regulation of at least 1.5 and significant p-values are bolded.



Table 3 — Prediction models using ten different variable sets

0 N o O

10

Variable set

Top 10 LASSO-selected miRNAs

Top 15 LASSO-selected miRNAs

Top 20 LASSO-selected miRNAs

8 LASSO-selected miRNAs and
clinical variables
All clinical variables

4 LASSO-selected clinical variables

All available variables
Top 5 LASSO-selected miRNAs

All miRNAs
GeneGlobe miRNAs

Variables

hsa-miR-382-5p, hsa-miR-193a-5p, hsa-miR-501-3p, hsa-miR-21-5p,
hsa-miR-877-5p, hsa-miR-141-3p, hsa-miR-375, hsa-miR-32-5p, hsa-
miR-2110, hsa-miR-1260a
hsa-miR-382-5p, hsa-miR-193a-5p, hsa-miR-501-3p, hsa-miR-21-5p,
hsa-miR-877-5p, hsa-miR-141-3p, hsa-miR-375, hsa-miR-32-
5p, hsa-miR-2110, hsa-miR-1260a, hsa-miR-140-5p, hsa-miR-
543, hsa-miR-26a-5p, hsa-miR-27b-3p, hsa-miR-423-3p
hsa-miR-382-5p, hsa-miR-193a-5p, hsa-miR-501-3p, hsa-miR-21-5p,
hsa-miR-877-5p, hsa-miR-141-3p, hsa-miR-375, hsa-miR-32-5p,
hsa-miR-2110, hsa-miR-1260a, hsa-miR-140-5p, hsa-miR-543, hsa-
miR-26a-5p, hsa-miR-27b-3p, hsa-miR-423-3p, hsa-miR-151a-5p, hsa-
miR-29b-3p, hsa-miR-1-3p, hsa-miR-30e-5p, hsa-miR-125a-5p
T2D medication, age, hsa-miR-382-5p, hsa-miR-32-5p, fasting blood
glucose, sex, hsa-miR-1-3p, hsa-miR-21-5p
All clinical variables (26)
T2D medication, age, fasting blood glucose, sex
All miRNAs and clinical variables (205)
hsa-miR-382-5p, hsa-miR-193a-5p, hsa-miR-501-3p, hsa-miR-21-5p,
hsa-miR-877-5p
All miRNAs (179)
hsa-miR-409-3p, hsa-miR-382-5p, hsa-miR-375, hsa-miR-1-3p

Accuracy
(95% CI)

1(0.91-1)

1(0.91-1)

0.974 (0.86-1)

0.974 (0.86-1)

0.947 (0.82-0.99)
0.947 (0.82-0.99)
0.947 (0.82-0.99)
0.921 (0.79-0.98)

0.842 (0.69-0.94)
0.789 (0.63-0.9)

Sensitivity
(95% CI)

1(0.74-1)

1(0.74-1)

0.917 (0.62-1)

0.917 (0.62-1)

0.833 (0.52-0.98)
0.833 (0.52-0.98)
0.833 (0.52-0.98)
0.917 (0.62-1)

0.583 (0.28-0.85)
0.5 (0.21-0.79)

Specificity
(95% CI)

1(0.87-1)

1(0.87-1)

1(0.87-1)

1(0.87-1)

1(0.87-1)
1(0.87-1)
1(0.87-1)
0.923 (0.75-0.99)

0.962 (0.8-1)
0.923 (0.75-0.99)

Note: LASSO models ranked based on accuracy.
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Figure 1 — Overview of study design. (A) General framework of patient stratification based on
miRNAs and clinical variables. (B) The study’s approach for variable selection and building
prediction models with miRNAs and clinical variables. (C) The approach for evaluating the
prediction models using patients with unclear remission status.
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Figure 2 — Adding miRNA information increases model accuracy. (A) Two non-remission
patients (highlighted as dark red) were misclassified in a model with four clinical variables
(accuracy = 0.947). One patient was correctly classified when four miRNAs were added
(accuracy = 0.974). (B) The second patient was correctly classified in a miRNA-only model
(10 miRNAs, accuracy = 1). Other patients remained correctly classified.
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Table 4 — Pre- and post-surgery characteristics of the two misclassified patients and predictions shown from LASSO models: with only clinical

variables, with clinical and miRNA variables, and with ten miRNAs

Patient Sex
1 M
2 M

Pre-surgery

12-months post-surgery

Remission prediction

Age
63

66

T2D

medication

No
No

Fasting plasma

glucose

193
135

HbAlc

T2D
medication

Yes
No

Fasting plasma

glucose

117
128

HbAlc Remission

6.3 No
5.9 No

Only clinical
variables

Yes
Yes

Clinical and
miRNAS

No
Yes

Only
mMiRNAs

No
No

Table 5 — Pre- and post-surgery characteristics of six unclear patients and predictions shown from post-surgery data and LASSO models: with only
clinical variables, with clinical and miRNA variables, with ten miRNAs, and with 15 miRNAs

Patient Sex Age

F

m m O O W >

F
M
F
F
M

Pre-surgery

12-months post-surgery

Remission prediction

63
41
43
49
54
37

T2D
medication

Yes
Yes
Yes
Yes
Yes
No

Fasting
plasma
glucose

137
118
127
NA
135
110

HbAlc
NA

6.4
6

7.6
7.5
6.6

T2D
medication

No
No
NA
No
Yes
NA

Fasting
plasma
glucose

NA
NA
102
NA
NA
95

HbAlc
6.1

5.7
5.4
NA
5.7
4.9

Based on
post-surgery data

Yes
Yes
Yes
Yes
No

Yes

Only clinical
variables

No
Yes
Yes
No
No
Yes

Clinical and
miRNAS

No
Yes
No
Yes
No
Yes

Only 10
mMiRNAs

No
Yes
No
Yes
No
No

Only 15
mMiRNAs

No
No
No
Yes
No
No
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Figure 3 — Significant Pearson correlations between selected miRNA and clinical variables.
The analysis was done using R packages Hmisc and ggcorrplot. Nonsignificant correlations

based on (A) p < 0.05 and (B) adjusted p < 0.05 are set to blank. Red boxes indicate positive
correlations, whereas blue boxes represent negative correlations.
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Table 6 — Obesity- and insulin resistance-related pathways regulated by the four predictive

mIiRNAS

No.

10
11
12
13
14
15
16
17
18
19

KEGG pathway

Thyroid hormone signaling pathway
Lysine degradation

FoxO signaling pathway

Fatty acid elongation

Prolactin signaling pathway

Focal adhesion

Adherens junction

ECM-receptor interaction

Valine, leucine, and isoleucine biosynthesis
Regulation of actin cytoskeleton

MAPK signaling pathway

p53 signaling pathway

mTOR signaling pathway

Protein processing in endoplasmic reticulum
Hippo signaling pathway

Fatty acid degradation

Endocytosis

PI3K-Akt signaling pathway

HIF-1 signaling pathway

p value

9.22E-05
2.04E-04
2.34E-04
0.0012
0.0014
0.0021
0.0024
0.0025
0.0036
0.0061
0.0102
0.0102
0.0133
0.0140
0.0157
0.0241
0.0263
0.0370

0.0478

No. of genes
33
15
41
7
21
52
20
19
2
50
54
21
18
39
32
7
41
68
26

No. of miRNAs
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Discussion

This study evaluated miRNAs as predictive biomarkers and used machine learning
approaches to select the most potential mMiRNAs and model building. We found that miRNAs
might improve T2D remission prediction and are best used with clinical variables. We
considered all miRNAs because statistically significant variables are not always good predictive

variables®!.

Our clinical model, based on T2D medication, age, sex, and fasting plasma glucose,
misclassified two non-remission patients. Both patients had similar pre-surgery conditions:
they did not take any T2D medications before surgery and were in their 60s. Patient 1 needed
T2D medicines after surgery; therefore, this patient had a non-remission status. In contrast,
patient 2 seemed to be borderline partial remission after surgery. The second patient's fasting
blood glucose was only three points above the upper limit for partial remission (<125 mg/dL).
Therefore, the clinical models correctly predicted that patient 2 could achieve remission after

surgery.

Adding miRNA information improved prediction for patient 1. When the miRNAs hsa-
miR-32-5p, hsa-miR-382-5p, hsa-miR-1-3p, and hsa-miR-21-5p were added into the clinical
model, patient 1 was correctly predicted to have non-remission, and patient 2 was still
predicted as remission. When 10 or 15 miRNAs were used instead of clinical variables, both
patients were classified as non-remission. Considering that patient 2 seemed to be borderline

remission, the model with both clinical variables and miRNAs appears to be the most accurate.

Data from the six patients with unclear remission status also agree that clinical variables
are essential in the prediction model. Models with clinical predictors matched the most with
post-surgery information. Using only miRNAs increased the disagreement between prediction

and post-surgery data. Although more samples are needed to confirm, this suggests that our
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miRNA-only models are likely to be an overfit, and clinical variables should be kept in pre-

diction models.

When available, miRNA information can help improve prediction for difficult patients
and provide additional information to potentially imprecise clinical measures. Two out of
four variables can be inaccurate in our clinical model: fasting plasma glucose and T2D
medication information. We requested our patients to fast before the OGTT, but we could not
guarantee that they genuinely fasted. T2D medication was obtained through the patient

questionnaire, which is subject to recall bias.

Our prediction models can help decision-making for newly diagnosed T2D patients who
qualify for SG. Some of our patients were unaware of their T2D status and were diagnosed
during their pre-surgery visit, which might explain the relatively low percentageof patients
taking T2D medication. We found that most patients who did not report taking T2D
medication achieved remission after SG, but not everyone. SG is a simpler surgery procedure,
but it has a lower T2D remission rate than Roux-en-Y gastric bypass (RYGB)*3!. Therefore,
deciding on bariatric surgery for new T2D patients is not straightforward. Our prediction models

might help predict whether SG would result in rapid T2D remission or not for these patients.

Previous prediction models, which used similar clinical variables, predicted remission in
SG patients with sensitivity and specificity up to 0.92 and 0.83, respectively**. Our clinical
model with four variables achieved sensitivity and specificity of 0.83 and 1, respectively, and
adding four miRNAs increased the sensitivity to 0.917. Confirmation in external cohorts is

vital to confirm the usefulness of our models.

To our knowledge, these four serum miRNAs (hsa-miR-32-5p, hsa-miR-382-5p, hsa-
miR-1-3p, and hsa-miR-21-5p) have not been studied as predictive biomarkers for T2D
remission after bariatric surgery. However, studies have reported associations between these

miRNAs with obesity and T2D. The miRNA hsa-miR-382-5p is involved in cholesterol
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homeostasis®?. Plasma and serum levelsof hsa-miR-21-5p are associated with T2D%%, as
well as with obesity®>®. The miRNA hsa-miR-32-5p is also associated with T2D® and
obesity®”88, Our pathway analysis identified 19 obesity- and T2D-related pathways regulated
by these miRNAs, including the mechanistic target of rapamycin (serine/threonine kinase)
(mTOR), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase-protein
kinase b (PI3K-Akt), fatty acid elongation, and degradation pathways. The miRNA hsa-miR-
1-3p has regulatory roles in cardiac muscle tissues and tumor suppressors in various cancers®®.

It is also dysregulated in pancreatic cancer patients®.

These miRNAs have been studied in bariatric surgery patients to measure differential
expression before and after surgery®®. An RYGB study reported that plasma hsa-miR-32-5p and
hsa-miR-21-5p were significantly reduced 9 and 12 months after surgery’:. However, another
RYGB study reported an increase of plasma hsa-miR-21-5p 12 months after surgery®®. The
miRNAs hsa-miR-1-3p and hsa-miR-382-5p were not significantly differentially expressed after
RYGB'. It appears that predictive miRNAs do not need to bedifferentially expressed after
surgery. However, these studies were primarily done in RYGB patients, and more studies with

SG patients are needed.

Our study suggests that miRNAs could potentially predict T2D remission after the
intervention. Our findings agree with a recent study identifying predictive miRNAs for T2D
remission after diet intervention®®. A recent study also reported predictive serum miRNAs for
weight loss after bariatric surgery’. The set of miRNAs is different from these studies, which
might reflect the study population. Our study focused on patients with T2D and obesity,
whereas the other study's patients had BMI around 30 as well as coronary heart disease.
Nevertheless, our study has limitations, including the small number of participants and limited

external validation. Owing to sample size limitations, we simplified T2D and remission groups

as dichotomous traits. Future studies could also investigate T2D subtypes based on [-cell
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function and insulin resistance measures® and include other diabetes-related variables such as C-
peptide and T2D duration. Some of the patients were unaware of their T2D status, so we could
not obtain an accurate T2D duration for these patients. Patients with differing risk profiles might
have different remission rates after surgery. Another limitation is thatwe focused on SG without
comparing other surgery types like RYGB. RYGB has better long-term T2D remission rates*43!,
but only 8% of our BBSS patients underwent RYGB. Due to study size limitations, we could
not compare miRNA's predictive value between these two surgery types adequately. It would
also be interesting to see whether miRNAs can differentiate between the original ASMBS
remission groups (‘complete remission,” "partial remission,” "improvement,” "unchanged,” and
"recurrence”). Additionally, we considered only 179 miRNAs that were included in the
quantitative PCR profiling platformfor serum samples. Using larger profiling platforms such as

small RNAsequencing might uncover more or better predictive miRNAs.

In conclusion, we identified four miRNAs (hsa-miR-32-5p, hsa-miR-382-5p, hsa-miR-1-
3p, and hsa-miR-21-5p) that might complement clinical models in predicting T2D remission
after SG. Further studies in much larger data are needed to confirm the utility of these serum
miRNAs as predictive biomarkers. Due to the sample size, our study might be considered a
pilot study. However, our results provide insights for future research. For example, the four
serum miRNAs could be studied further to understand molecular subtypes of T2D that separate

remission and non-remission patients.
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Conclusions

1. Four serum miRNAs (hsa-miR-32-5p, hsa-miR-382-5p, hsa-miR-1-3p, and hsa-miR-21-

5p) that might predict T2D remission 12 months after SG were identified.
2. These miRNAs are involved in pathways related to obesity and insulin resistance.

3. Biomarker research could focus on these miRNAs and validate them in larger cohorts to

evaluate their predictive value.

4. The miRNAs could also be studied further to understand molecular subtypes of T2D

patients with obesity.
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Abstract: Bariatric surgery is an efficient treatment for weight loss in obese patients and for resolving
obesity comorbidities. However, the mechanisms behind these outcomes are unclear. Recent
studies have indicated significant alterations in the transcriptome after surgery, specifically in the
differential expression of microRNAs. In order to summarize the recent findings, we conducted a
systematic summary of studies comparing microRNA expression levels before and after surgery.
We identified 17 animal model and human studies from four databases (Ovid, Scopus, Web of
Science, and PubMed) to be enrolled in this meta-analysis. From these studies, we identified
14 miRNAs which had the same direction of modulation of their expression after surgery in at
least two studies (downregulated: hsa-miR-93-5p, hsa-miR-106b-5p, hsa-let-7b-5p, hsa-let-7i-5p,
hsa-miR-16-5p, hsa-miR-19b-3p, hsa-miR-92a-3p, hsa-miR-222-3p, hsa-miR-142-3p, hsa-miR-140-5p,
hsa-miR-155-5p, rno-miR-320-3p; upregulated: hsa-miR-7-5p, hsa-miR-320c}. Pathway analysis for
these miRNAs was done using database resources {DIANA-TarBase and KEGG pathway database)
and their predicted target genes were discussed in relation with obesity and its comorbidities.
Discrepancies in study design, such as miRNA source, bariatric surgery type, time of observation
after surgery, and miRNA profiling methods, were also discussed.

Keywords: microRNA; bariatric surgery; Type 2 Diabetes; obesity

1. Introduction

Bariatric surgery was first performed in 1963 to help obese patients lose excess weight
permanently [1]. Since then, numerous surgery procedures were developed with varying gastrointestinal
effects [1,2]. For example, Sleeve Gastrectomy (SG) and Gastric Band are primarily restrictive to limit
food intake and induce early satiety, while Roux-en-Y (RYGB) is both restrictive and malabsorptive [1,2].
All procedures result in significant weight loss (14.9%-28.4%) and minimal weight regain (1.4%-3.9%)
years after surgery [3-5]. SG is more popular in Poland and the US [6-8] as it is a relatively
less complicated procedure and has less surgery complications and reoperation compared to other
procedures [4,9-14].

In addition to weight loss, many bariatric surgery patients demonstrate improvement in
comorbidities of obesity post-operation. This includes recovery from Type 2 Diabetes Mellitus
(T2DM) and achieving long-term favorable levels of cardiovascular risk factors, such as high-density
lipoprotein cholesterol and hypertension [4,15,16]. Bariatric surgery is also associated with reduced
risk of obesity-related cancers, such as colon and endometrial cancer [17]. Although this surgery is
mainly reserved for class III obese patients (BMI > 40 kg/m?), it is also recommended for less obese
patients (BMI > 35 kg/mZ) with obesity comorbidities due to these beneficial outcomes [16,18].

/. Clin. Med. 2019, 8, 1220; doi:10.3390/jem8081220 www.mdpi.com/fjournalfjem

45



I Clin. Med. 2019, 8, 1220 20f19

In the case of T2DM, glucose control via surgical treatment was reported to be better than medical
therapy [19-22]. Recently, bariatric surgery is endorsed as a treatment for obese diabetic patients by
the International Diabetes Federation, American Diabetes Association {ADA), and American College
of Surgeons [23]. However, T2DM remission rates appear to differ between surgery procedures, where
RYGB has higher rates compared to SG and Gastric Band [4,24]. A study reported 60.2% of RYGB
patients achieved diabetes remission after 7 years of surgery, compared to 20.3% for Gastric Banding [4].
Long-term diabetes remission for SG was quite low in two studies: 35.3% for Taiwanese patients and
28% for American patients after 5 years of surgery [13,24], but another study reported a remission rate
of 66% five years after SG [25].

The mechanisms of these long-term beneficial effects after bariatric surgery is poorly understood.
The acronym “BRAVE” is often used to describe RYGB physiological effects, which are to alter bile
flow, restrict stomach size, alter anatomy/flow of nutrients, manipulate vagal, and modulate enteric gut
and adipose hormones [26]. However, these effects cannot explain all the observed metabolic changes
associated with RYGB [27]. Thus, researchers are looking into the molecular biological explanations
for these metabolic effects after surgery. Novel biomarkers from these studies would not only help us
understand the mechanisms behind bariatric surgery outcomes, but also serve as patient-level factors
for predicting these outcomes [2].

Epigenetic changes due to surgery could give insight into these mechanisms. Epigenetic
machinery, such as DNA methylation, histone medifications, and non-coding RNAs, can respond
to external environmental cues by altering gene expression levels without changing DNA sequence.
In recent years, there is an increasing interest in studying the relationship between epigenetic changes
and bariatric surgery outcomes [28]. Among them are studies on microRNAs (miRNA) [29-45].
These small non-coding RNAs (21-22 nucleotides) are important for regulating gene expression
post-transcriptionally. Single-stranded miRNA binds to a complementary target messenger RNA
(mRNA) to disrupt translational processes [46—49]. A single miRNA can have multiple targets
and regulate many different biological pathways [50-52]. Studies have reported miRNAs that
regulate obesity-related pathways [53-60] and miRNA dysregulation is linked to obesity and its
comorbidities [29,61-64].

Several miRNA studies have reported short- and long-term miRNA profile changes after bariatric
surgery in various tissues of animal models and humans [29-45]. However, these studies typically
have small sample sizes, use different profiling strategies, and study different types of bariatric surgery.
There are no literature reviews so far on these surgery-related miRNAs. Thus, this study aims to
identify consistently modulated miRNAs after bariatric surgery and report biological pathways that
are predicted to be regulated by these miRNAs. These pathways may give insight into the molecular
mechanisms behind weight loss and remission of obesity comorbidities after bariatric surgery.

2. Methods

2.1. Search Strategies

The databases for the literature search were chosen based on a recommendation of the optimal
database combinations [65] and database accessibility in our institution. The four databases chosen
were Ovid, Scapus, Web of Science, and PubMed. The databases were searched for studies profiling
modulation of miRNA expression in bariatric surgery patients published up until 10 February 2019.
The search terms were: (miRNA AND Bariatric surgery) OR (microRNA AND Bariatric surgery).
For Ovid, an advanced search was used with the search terms. A basic search was used for the
other databases.

2.2. Study Selection

During the screening stage, the exclusion criteria were: (1) non-English publications,
(2) abstracts-only publications, case reports, comments, or reviews, (3) no report or comparison
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of miRNA profiles before and after surgery or between bariatric surgery-operated animals and
sham-operated animals, or (4) added another intervention post-surgery before miRNA assessment.
Inclusion criteria were (1) animal and human studies, (2) any profiling method, (3) any bariatric surgery
method, (4) any biological sample type, and (5) reported cut-off criteria for differentially expressed
miRNAs. One full-text study was later excluded due to inconsistent reporting of the direction of
miRNA expression.

2.3. Data Collection Process

The items collected from the full text and Supplementary Information followed a recent methods
paper for meta-analysis of miRNAs studies [66]. The items were: first author, year of publication,
digital object identifier (DOI) when available, study location, species of the samples, tissue types,
bariatric surgery type, sample sizes, body mass index (BMI) before and after surgery, comparison
groups, number of follow-up visits and their time after surgery, miRNA expression profiling platform,
cut-off criteria of dysregulated miRNAs, and the list of differentially expressed miRNAs. Study authors
were contacted to identify missing information on bariatric surgery type.

2.4. Synthesis of Results

Only miRNAs reported in at least two independent studies were retained for analysis. The selected
miRNAs were grouped into three categories based on their consistency. The first group included
miRNAs with consistent report of expression direction in two or more studies. The second group
included miRNAs with some discrepancies in the direction, but two or more studies agreed on adirection.
The third group included miRNAs with no consistent reports of expression direction. Pathway analysis
was done only for the first two miRNA groups. Pathway analysis was done using DIANA miRPath v.3
to predict their target genes and KEGG pathways (http://www.microrna.gr/miRPathv3) [67].

3. Results

3.1. Selected Studies for the Meta-Analysis

A total of 164 articles were retrieved from Pubmed, OVID, Scopus, and Web of Science. After
screening and assessment, 17 studies were selected for the meta-analysis (Figure 1). These studies
have varying sources of miRNA, surgery type, and profiling strategies.

Most reported studies profiled miRNA levels before and after bariatric surgery in human patients
(n = 13) (Table 1) [29-33,36-38,40—44], but some studied animal models (n = 4) [34,35,39,45]. The
human studies were conducted in Caucasian [29-31,33,36-38,41-43] and Asian populations [32,40,44].
Most of these studies have small sample sizes (less than 30 participants; # = 15). However, a recent
study in Austria profiled 58 patients [36] and a study in China profiled 124 patients [44]. The human
studies mostly had more female patients, with the exception of one study [33], while animal studies
investigated exclusively male animals.
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(n=40)

OVID
(n=48)

Screening

Eligibility

Included

Records screened (n = 93)

40f19

Scopus Web of Science
(n=46) (n=30)

Dupli removed 71

Records excluded (n = 75)
Non-research 53
No comparison of miRNA expression
before and after surgery 21
Additional intervention 1

Full-text articles assessed

n=18

Full-text articles excluded (n=1)

Inconsistent direction of
dysregulation 1

Studies included for meta-analysis

n=17

Figure 1. Flow diagram for study selection.

Table 1. The studies selected for meta-analysis.

Study Year Country Sample Size Sex (Males/Females)
Human studies (comparing before vs. after bariatric surgery)

Ortega etal. [29] 2013 Spain 22 5/17

Alkandari et al. [30] 2018 UK 9 4/5

Atkin et al. [31] 2019 USA 29 9/20

Bae et al. [32] 2019 South Korea 12 Unspecified

Blum et al. [33] 2017 Isracl 21 14/7

ITohensinner et al. [36] 2018 Austria 58 17/41

Hubal et al. [37] 2017 USA 6 0/6

Hulsmans ct al. [38] 2012 Belgium 21 7/14

Lirun et al. [40] 2015 China 18 411

Mysore et al. [41] 2017 Spain 22 0/22

Ortega ctal. [42] 2015 Spain 25 0/25

Ortega et al. [43] 2015 Spain 9 0/9

Wang et al. [44] 2018 China 124 46/78

Animal studies (comparing bariatric vs sham surgery)

Guo et al. [34] 2016 China 35 35/0

Wei et al. [35] 2018 China 45 45/0

Kwon et al. [39] 2015 South Korea 25 25/0

Wu et al. [45] 2015 UK 12 12/0

The studies isolated miRNAs from different tissues:

blood (plasma and serum)

(n =7) [29-31,33,36,40,45], circulating exosomes [32,37], monocytes [38], circulating endothelial
progenitor cells [44], adipose tissue [41-43], liver [34,35,45], and hypothalamus [39] (Table 2).
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Table 2. Tissue source and miRNA profiling strategies.

50f19

Study Tissue Isolation Platform Normalization
Human studies
Geometric mean of six
miRNAs (hsa-miR-106a-5p,
. TagMan array miRNA hsa-miR-146a-5p,
-
Ortega et al. [29] Plasma E;rl:::; i;\tRIS cards in a subset and hsa-miR-19b-3p,
on qPCRin the final sample  hsa-miR-223-3p,
hsa-miR-186-3p,
hsa-miR-199a-3p)
Four miRNAs
. . (hsa—mi[\’—223—3p,
5 F 2
Alkandarietal. [30]  Plasma mirvana PARIS miRCURY qPCR panel  hsa-miR-26a-5p,
Isolation Kit . )
hsa-miR-101-3p, and
hsa-miR-19a-3p)
. . o miRCURY RNA qPCR and a FANTOM .
Atkin et al. [31] Plasma Isolation kit miRNA atlas [6¢] Global mean
Bae et al. [32] Exosome miRNeasy Mini Kit ~ Small RNA sequencing Rc,ldhvc lug Sxpressioi
7 using DESeq2
iRNeas RNA scquencing ina
Blum et al. [33] Serum mRNeasy . subset and qPCR inthe  hsa-miR-451a
serumy/plasma kit N
final sample
Hohensinner ctal. [36]  Plasma E:RNA tissue lysis qPCR RNA spike-in
- N mirVANA miRNA  GeneChip miRNA 4.0 -
1ubal et al. [37] Exosome Isolation Kit Atray RMA algorithm
Hulsmans et al. [38] Monocytes TRIzol reagent qPCR RNU5G
. ) mirVana RNA GeneChip miRNA 3.0 .
Lirun et al. [40] Plasma Isolation Kit Atray RMA algorithm
Subcutaneous
Mysore et al. [41] Adipose Tissue  miRNeasy Mini kit  qPCR RNU44
(SAT)
GeneChip miRNA 3.0
Ortega et al. [42] SAT miRNeasy Mini Kit  array in a subset and RMA algorithm and RNU48
qPCR in the final sample
Ortega et al. [43] SAT miRNeasy Mini Kit  qPCR RNU6B
Circulating
Wang et al. [44] Endathelial High Pure RNA kit qPCR RNUs
Progenitor
Cells
Animal studies
e -
Guo et al. [34] Liver TRIzol reagent mil ro{l}e Customized 55 rRNA and RsnRNA Uéb
Rat qPCR arrays
miProfile Customized 55 rRNA, RsnRNA Us,
Wei et al. [35] Liver TRI7ol reagent N rno-miR-25, and
Rat qPCR arrays .
i rno-miR-186
Agilent Rat miRNA
Hypothalamus, 8x15k microarray for
Kwon et al. [39] [leart, and Unspecified hypothalamus and heart ~ Whole-array and RNUé
Liver samples, then qPCR for

liver and validation

Wu etal. [45]

Plasma and
Liver

mirVANA PARIS
RNA Isolation kit

TaqMan Array Rodent
Card

RNU6-1, RNU6-2,
rno-miR-16-5p,
rno-miR-223-3p,
mmu-miR-1937b

The studies also differ in the miRNA profiling strategies (Table 2). For isolation methods, the
studies used either mirVANA isolation kits (r = 5), miRNeasy kits (n = 5), TRIzol reagent (n = 3) or
other kits. Most of the studies then used qPCR (52 = 7) or microarrays (n = 5) as their main profiling
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method. RNA sequencing was used as the main analysis in one study [32]. Other studies (n = 4) used
a screening step using high-throughput profiling methods, such as microarrays and RNA sequencing,
in a subset of their patients, then qPCR as validation in the final sample. Human studies using
microarrays used the Robust MultiArray Average (RMA) method for normalization (1 = 3). Studies
with cells and tissue samples normalized their data using small non-ceding RNAs with RNUé and
RNUS6B being most commonly used (1 = 6). Studies with plasma and serum samples used a number of
stable miRNAs, which were unique for each study. One plasma study used RINA spike-in levels for
normalization [36] and the RNA sequencing study used DESeq2 package for normalization [32].

The surgery type most commonly assessed is RYGB (1 = 13} (Table 3) [29-32,36-43,45], but one
study collected two SG patients in addition to RYGB [32] and one study profiled only SG patients [33].
In rats, the studies compared a duodeno—jejunal bypass (DJB) [34,35] or RYGB [39,45] with sham
surgery. One study also performed SG in rats to compare with DJB results [34].

Lastly, the studies differ in the duration of study and number of observations after bariatric
surgery {Table 3). One study of RYGB patients profiled miRNAs in five time points (1-, 3-, 6-, 9-,
and 12-months post-surgery) [30]. Two studies in rats also studied miRNA levels two-, four-, and
eight-weeks post-surgery [34,35]. Other studies only profiled miRNA once after surgery. Time of
observation also differs between studies. Some studies looked into short-term expression changes
(less than or equal to 3 months; # = 9), while others looked at long-term response (1 = 9; maximum
2-years post-surgery).

Table 3. Bariatric surgery type and time of observation after surgery.

Study Year Bariatric Surgery Type Time of Observation after Surgery
Human studies

Ortega et al. [29] 2013 RYGB 12 months

Allkandari et al. [30] 2018 RYGB 1,3, 6,9, and 12 months

Atkin et al. [31] 2019 RYGB 21 days

Bae et al. [32] 2019 RYGB and 5G 6 months

Blum et al. [33] 2017 SG 3 months

Hohensinner et al. [36] 2018 RYCB 24 months

Hubal et al. [37] 2017 RYGB 12 months

Hulsmans et al. [38] 2012 RYGB 3 months

Lirun et al. [40] 2015 RYGB 3 months

Mysore et al. [41] 2017 RYGB 24 months

Ortega et al. [42] 2015 RYGB 24 months

Ortega et al. [43] 2015 RYCB 24 months

Wang et al. [44] 2018 Not specified 3 months
Animal studies

Guo et al. [34] 2016 DJB and SG 2,4, 8 weeks

Wei et al. [35] 2018 DJB 2,4, 8 weeks

Kwon et al. [39] 2015 RYGB 25 days

Wu et al. [45] 2015 RYGB 53 days

3.2. Differential Expression of miRNA before and after Surgery

According to the selected studies, a total of 50 miRNA families and 205 unique miRNAs were
significantly differentially expressed after surgery compared to baseline. Among these, 32 differentially
expressed miRINAs were identified in at least two different studies. The 32 miRNAs can be grouped
based on the consistency of findings and reasons for discrepancies (Table 4).
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Group 1 includes 14 miRNAs that changed in the same direction of expression, regardless
of sample type and time of observation (downregulated: hsa-miR-93-5p, hsa-miR-106b-5p,
hsa-let-7b-5p, hsa-let-7i-bp, hsa-miR-16-5p, hsa-miR-19b-3p, hsa-miR-92a-3p, hsa-miR-222-3p,
hsa-miR-142-3p, hsa-miR-140-5p, hsa-miR-155-5p, rno-miR-320-3p; upregulated: hsa-miR-7-5p,
hsa-miR-320c). Group 2 includes six miRINAs with inconsistent findings, but at least two studies
agreed on a direction of expression (overall downregulated: hsa-miR-125b-5p, hsa-miR-130-3p,
hsa-miR-221-3p, hsa-miR-146a-5p, rno-miR-122-5p; overall upregulated: rno-miR-503-5p). For example,
hsa-miR-125b-5p was found to be downregulated in two studies profiling miRNA from plasma
samples, but was upregulated in an exosome study. Lastly, group 3 includes 12 miRINAs reported in
two studies but with no agreement in direction (hsa-miR-21-5p, hsa-miR-33a-5p, hsa-miR-320a-3p,
hsa-miR-320b, hsa-miR-378a-3p, hsa-miR-103-3p, rno-miR-133b-3p, rno-miR-194-5p, hsa-miR-122-5p,
mo-miR-146a-5p, ro-miR-542-3p, hsa-miR-191-5p).

3.3. Pathway Analysis

DIANA-miRPath was used to identify pathways regulated by miRNAs in Group 1 and 2. The first
analysis was done with only Group 1, and a total of 74 KEGG pathways were significantly predicted
to be regulated by these miRNAs. The miRNAs were predicted to target genes involved in cancer,
cell cycle, fatty acid metabolism, signaling pathways, infectious diseases, and RNA processes in
cells (Figure 2). The inclusion of Group 2 miRNAs resulted in a slightly different pathway profile.
This secondary analysis retained most pathways from the first analysis (69 out of 74) and added
eight different significant pathways. The additional pathways were related to signaling pathways,
metabolism, and biosynthesis processes (not shown).
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Figure 2. Significantly enriched KEGG pathways of surgery-responsive miRNAs. The miRNAs
reported to be involved in a particular pathway are indicated in colors green or red; otherwise, they are
indicated as white. Green indicates pathways targeted by down-regulated miRNAs. Red indicates

pathways targeted by up-regulated miRNAs.
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4, Discussion

The benefits of bariatric surgery beyond weight loss, such as T2DM remission, have been reported
extensively [15,16,19-22]. However, the mechanisms behind successful weight loss and improvement
of obesity comorbidities are poorly understocd. In recent years, more and more studies are looking into
a patient’s miRNAome before and after bariatric surgery. The miRNA profile changes as a response to
environmental changes, including bariatric surgery. Understanding how miRNA profile changes due
to bariatric surgery might uncover important pathways behind its outcomes.

We found that through February 2019, there were 17 studies on miRNA profiles of patients before
and after bariatric surgery. Although a relatively small number, there is a sharp increase in publications
in the last five years. The first study among them was published in 2012 [38] and 15 studies were
published in and after 2015. This indicates a rapid increase in interest of miRNAs related to bariatric
surgery. These studies consistently found differential expression of miRNAs after surgery in various
tissues with a total of 205 unique miRNAs reported so far. This is in contrast to other genetic studies
that found inconsistent findings of the influence of bariatric surgery on DNA methylation [28,69] and
no associations between Single-Nucleotide Polymorphisms with weight loss success after bariatric
surgery [70,71].

However, these recent miRNA studies were highly variable in study design. Studies on rats
looked into a wide range of tissues and included tissues inaccessible in human studies, such as the
hypothalamus and liver. Most human studies profiled easily accessible tissues, including circulating
miRNA in plasma, serum, exosomes, and monocytes. Some studies had access to adipose tissue
biopsies which were collected from patients a few years after surgery. In contrast, human blood
samples were able to be collected earlier and at more time points. The earliest time point was 21 days
after surgery [31] and one study had five time points after surgery [30]. The sample type and time
of observation appeared to be the main reasons for the discrepancy in miRNA expression direction,
especially in Group 3’s miRNAs. For example, hsa-mir-21-5p, hsa-miR-320a-3p, hsa-miR-320b, and
hsa-miR-378a-3p expressions appear to be time-dependent. Whereas, hsa-miR-33a-5p appears to have
sample-specific expression, where its expression was increased in plasma samples, but reduced in
exosomes. The other seven miRNAs in Group 3 had both sample type and time differences between
the studies that reported them. Studies with more participants on the same sample type and time
points are needed to confirm the time and tissue specificity of these miRNAs.

Despite the high variability between studies, there were 14 human and rat miRNAs with
consistent direction of differential expression after surgery. In at least two studies, hsa-miR-93-5p,
hsa-miR-106b-5p, hsa-let-7b-5p, hsa-let-7i-5p, hsa-miR-16-5p, hsa-miR-19b-3p, hsa-miR-92a-3p,
hsa-miR-222-3p, hsa-miR-142-3p, hsa-miR-140-5p, hsa-miR-155-5p, and rno-miR-320-3p were reported
to have lower expression levels, while hsa-miR-7-5p and hsa-miR-320c had increased expression levels
after surgery. These miRNAs are predicted to be important in various cellular pathways, including
those related te lipid metabolism, insulin signaling pathway, and cardiac function. The genes within
these pathways are interesting targets for functional studies to understand the mechanisms behind
weight loss and remission of obesity-related comorbidity after surgery.

For instance, the most significant pathway is the “proteoglycans in cancer” (hsa05205) and the
13 human miRNAs were predicted to target 140 genes in this pathway. One of them is FZD7, which is
one of the Frizzled (Fzd) transmembrane receptors for Wnt proteins [72]. Reduced expression of Wnt
proteins is associated with obesity [73]. The hsa-miR-142-3p, which was reported to be downregulated
after surgery, is predicted to interact with FZD7. This might lead to an increase in FZDY expression,
activation of the Wnt/Fzd signaling, and thus attenuation of obesity.

These miRNAs were also predicted to target 30 genes in the fatty acid metabolism pathway.
The upregulated hsa-miR-7-5p was predicted to target FASN, which is inversely correlated with
parameters of glycemic status [74] and its expression is elevated in numerous obesity-related cancers [75].
The downregulation of FASN would result in lower risks for these comerbidities. In addition,
Ortega et al. focused on inflammation-responsive miRNAs in adipose tissues [43] and among them,
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hsa-miR-155-5p and hsa-miR-222-3p were included in the Group 1 miRNAs. The hsa-miR-155-5p
has been reported to be elevated in numerous inflammatory conditions [76]. Transfection of an

hsa-miR-155 inhibitor in myeloid cells was found to decrease proinflammatory cytokine expression [77].

Deregulation of hsa-miR-155-5p and hsa-miR-222 was also found to be associated with cardiovascular
diseases [78,79]. These reports indicate that these miRNAs might be involved in the mechanisms behind
reduced inflammation and cardiovascular risks after bariatric surgery. Functional studies are needed
to determine the role of these surgery-responsive miRNAs in promoting bariatric surgery outcomes.

Although limited in sample size and the number of miRNAs analyzed, studies on 5G patients
and animal models suggest different miRNA profiles compared to other surgery types. A study in rats
compared mo-miR-200a-3p expression levels between DJB and SG [34]. In this study, rno-miR-200a-3p
expression was significantly higher in DJB compared to sham-operated animals. In contrast, this

miRNA expression was unchanged after SG and comparable to the sham-operated group [34].

In humans, a study of SG patients reported significant increase in hsa-miR-122-5p levels in serum after

surgery [33], but another study reported decreased levels of hsa-miR-122-5p in plasma after RYGB [29].

The discrepancy might explain the apparent differences in bariatric success rates between RYGB and
SG, especially concerning the remission of comorbidities such as diabetes. More comparative studies
between RYGB and SG patients are needed to confirm these observations.

However, it is interesting that although many studies used high-throughput methods, only
32 miRNAs were reported in at least two studies. This might be due to the differences in miRNA
isolation, profiling, and normalization strategies between studies. For isolation methods, some studies
showed that miRNeasy isolation kits produce higher RNA quantity and better quality compared to
miRVana [80,81]. Maximizing the isolated miRNA yield is particularly important for plasma and serum
samples as their miRNA abundance is significantly lower than tissues [80]. Low yield might result in
failure of detecting low-abundance miRNAs [80] and this may contribute to the poor agreement in
miRNA profiles between plasma and serum studies [82].

The highly different profiling methods between studies could also be the source of this limited
agreement in their findings. Comparative studies have found low correlation between different
profiling methods when used to analyze the same samples [82]. Different microarray platforms were
found to share a large number of common miRNAs, but the vast majority of the differentially expressed
calls were not unanimous across platforms [83]. The median rank correlation between microarray
platforms in a different study was only 0.55, while the median correlation between microarray and
qPCR was 0.7 [84]. However, one microarray platform had a correlation of lower than 0.5 with
qPCR [84]. The cause of this disagreement is unclear [83]. For different qPCR-based platforms, a study
found good correlation of CT data between two platforms, but gel electrophoresis suggests a large
number of false positive results for an assay [82]. Although these comparative studies did not compare
the exact arrays used in our analysis, they suggest there might also be little agreement between
profiling methods in our selected studies, leading to a limited number of miRNAs reported in two or
more studies.

Finally, normalization is crucial for providing robust expression data, but there is no consensus
regarding normalization methods for miRNA results [85]. Several studies have discussed commonly
used normalization methods and found that small nuclear RNAs such as U6 are not good normalizers
for miRNA expression [82,85]. This is because RNU6 and other small nuclear RNAs do not reflect the
biochemical character of miRNAs and their efficiency throughout the profiling experiments may differ
from miRNAs [82,85]. However, many studies profiling miRNA from bariatric surgery patients used
RNUE6 as their normalization method. Several authors recommend a global mean normalization of a
set of reference genes, which may be tissue-specific, with a minimum of three stable housekeeping
genes [82,86]. Some of the studies in our analysis used this method, particularly studies with plasma
and serum samples.

In addition to these study design limitations, our analysis has not considered population and sex
differences, as well as analyzing miRNA results by sample type due to the limited number of studies
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published so far. Some studies have demonstrated population-specific miRNA expression between
populations [87,88]. For example, a study found 16% of the evaluated miRNAs differ significantly
between these Caucasians and Africans [87]. There were three studies in Asians in this analysis and
their miRNA modulation patterns might not be the same as those of Caucasians. More studies with
Asians and other populations should be done to investigate population-specific patterns in miRNA
modulation after surgery. Sex differences were also not explored in the current analysis as most human
studies were carried out in female patients, while animal studies were performed in male rats. Recent
studies in patients and healthy participants have reported sex-biased miRNA expression [89,90]. More
studies with male patients are needed to investigate sex-biased miRNA patterns after bariatric surgery.
Lastly, our analysis combined findings from different tissue types, but this global approach might
mask tissue-specific mMiRNA patterns after surgery. Unfortunately, there are limited human studies
comparing miRNA profiles in tissue samples before and after surgery. As mentioned before, this is
likely because of the difficulty in obtaining tissues after surgery. The three studies using SAT samples
collected the tissues from the same hospital in Spain [41—43]. Only two miRNAs (hsa-miR-155-5p and
hsa-miR-221-3p) were reported in at least two of these studies. This is because two SAT studies had
targeted miRNA profiling, where Mysore et al. profiled only hsa-miR-221-3p and Ortega et al. profiled
only inflammation-induced miRNAs in one study [43]. More untargeted miRNA studies from SAT
samples are needed to explore tissue-specific miRNA patterns after surgery.

5. Conclusions

We have identified 14 miRNAs with consistently altered expression after bariatric surgery,
regardless of sample type, surgery type, and time of observation after surgery. However, these findings
should be taken with caution. These miRINAs were identified from 13 studies with highly variable
study design and small sample sizes. A consensus in miRNA profiling methods is crucial for a better
comparative study of profiling studies. Until then, a better analysis would be to compare findings of
studies with similar strategies. Future studies should also aim te profile a larger number of participants
and untargeted profiling of SAT samples. Additionally, more profiling studies in different populations
and in males are needed to investigate the generalizability of miRNA modulation after surgery. Studies
investigating SG patients are also needed as this surgery type is becoming the most commonly used
technique in many countries. Finally, functional studies are needed to understand the role of these
miRNAs in promoting weight-loss and remission of abesity-related comorbidities after bariatric surgery.
This may lead to novel targets for non-surgical treatment of obesity and its comorbidities and provide
novel biomarkers for predicting bariatric surgery outcomes.

Author Contributions: conceptualization, G.L., L.S., A.K.; methodology, G.L.; formal analysis, G.L.; data curation,
G.L.; writing—original draft preparation, G.L.; writing—review and editing, G.L., L.5., A.K_; visualization, G.L.;
supervision, L.S., A.K.; project administration, G.L.; funding acquisition, A.K.

Funding: This research was conducted within the project which has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sktodowska-Curie grant agreement No.
754432 and the Polish Ministry of Science and Higher Education, from financial resources for science in 2018-2023
granted for the implementation of an international co-financed project.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Moshiri, M.; Osman, S.; Robinson, T.].; Khandelwal, 5.; Bhargava, I; Rohrmann, C.A. Evolution of Bariatric
Surgery: A Historical Perspective. Am. |. Roentgenol. 2013, 201, W40-W48. [CrossRef] [PubMed]

2. Arterburn, D.E.; Courcoulas, A.P. Bariatric Surgery for Obesity and Metabolic Conditions in Adults. BMJ
2014, 349, g3961. [CrossRef] [PubMed]

58



I Clin. Med. 2019, 8, 1220 150f 19

6.

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

Maciejewski, M.L.; Arterburn, D.E.;; Van Scoyoc, L.; Smith, V.A,; Yancy, W.5.; Weidenbacher, H.J.;
Livingston, E.H.; Olsen, M.K. Bariatric Surgery and Long-Term Durability of Weight Loss. Jama Snurg.
2016, 151, 1046. [CrossRef] [PubMed]

Courcoulas, A.P; King, W.C.; Belle, S.H.; Berk, P; Flum, D.R,; Garcia, L.; Gourash, W.; Horlick, M.;
Mitchell, .E.; Pomp, A.; et al. Seven-Year Weight Trajectories and Health Outcomes in the Longitudinal
Assessment of Bariatric Surgery (LABS) Study. Jama Surg. 2018, 153, 427. [CrossRef] [PubMed]

Inge, T.H.; Courcoulas, A.P; Jenkins, T.M.; Michalsky, M.P; Helmrath, M.A.; Brandt, M.L.; Harmon, C.M.;
Zeller, M.H.; Chen, M.K.; Xanthakos, S.A.; et al. Weight Loss and Health Status 3 Years after Bariatric Surgery
in Adolescents. N. Engl. |. Med. 2016, 374, 113-123. [CrossRef] [PubMed]

ASMBS. Estimate of Bariatric Surgery Numbers, 2011-2017 | American Society for Metabolic and Bariatric
Surgery. Available online: hitps://asmbs.org/resources/estimate-of-bariatric-surgery-numbers (accessed on
29 July 2019).

Angrisani, L.; Santonicola, A.; Tovino, P.; Formisano, G.; Buchwald, H.; Scopinaro, N. Bariatric Surgery
Worldwide 2013. Obes. Surg. 2015, 25, 1822-1832. [CrossRef]

Janik, M.R.; Stanowski, E.; Pasnik, K. Present Status of Bariatric Surgery in Poland. Videosurgery Miniinvasive
Tech. 2016, 1, 22-25. [CrossRef]

Chang, 5.-H.; Stoll, C.R.T.; Song, J.; Varela, ].E.; Eagon, C.].; Colditz, G.A. The Effectiveness and Risks of
Bariatric Surgery: An Updated Systematic Review and Meta-Analysis, 2003-2012. fama Surg. 2014, 149, 275.
[CrossRef]

Inge, T.H.; Jenkins, T.M.; Xanthakos, 5.A.; Dixon, |.B.; Daniels, 5.R.; Zeller, M.H.; Helmrath, M.A. Long-Term
Outcomes of Bariatric Surgery in Adolescents with Severe Obesity (FABS-5+): A Prospective Follow-up
Analysis. Lancet Diabetes Endocrinol. 2017, 5, 165-173. [CrossRef]

Olbers, T.; Beamish, A.J.; Gronowitz, E.; Flodmark, C.-E.; Dahlgren, J.; Bruze, G.; Ekbom, K,; Friberg, P;
Gothberg, G.; Jarvholm, K.; etal. Laparoscopic Roux-En-Y Gastric Bypass in Adolescents with Severe Obesity
(AMOS): A Prospective, 5-Year, Swedish Nationwide Study. Lancet Diabetes Endocrinol. 2017, 5, 174-183.
[CrossRef]

Ibrahim, A.M.; Thumma, ].R.; Dimick, ].B. Reoperation and Medicare Expenditures After Laparoscopic
Gastric Band Surgery. Jama Surg. 2017, 152, 835, [CrossRef]

Lee, W-J.; Chong, K.; Aung, L.; Chen, S.-C.; Ser, K.-H.; Lee, Y.-C. Metabolic Surgery for Diabetes Treatment:
Sleeve Gastrectomy or Gastric Bypass? World |. Surg. 2017, 41, 216-223. [CrossRef] [PubMed]

Li, J.; Lai, D.; Wu, D. Laparoscopic Roux-En-Y Gastric Bypass Versus Laparoscopic Sleeve Gastrectomy to
Treat Morbid Obesity-Related Comorbidities: A Systematic Review and Meta-Analysis. Obes. Surg. 2016, 26,
429-442. [CrossRef] [PubMed]

Sjostrom, L.; Lindroos, A .-K.; Peltonen, M.; Torgerson, J.; Bouchard, C.; Carlsson, B.; Dahlgren, S.; Larsson, B.;
Narbro, K.; Sjostrom, C.D.; et al. Lifestyle, Diabetes, and Cardiovascular Risk Factors 10 Years after Bariatric
Surgery. N. Engl. . Med. 2004, 351, 2683-2693. [CrossRef] [PubMed]

Poirier, P.; Cornier, M.-A.; Mazzone, T.; Stiles, 5.; Cummings, S.; Klein, 5.; McCullough, P.A.; Ren Fielding, C.;
Franklin, B.A. Bariatric Surgery and Cardiovascular Risk Factors: A Scientific Statement from the American
Heart Association. Circulafion 2011, 123, 1683-1701. [CrossRef] [PubMed]

Schauer, D.F; Feigelson, H.S.; Koebnick, C.; Caan, B.; Weinmarn, 5.; Leonard, A.C,; Powers, ].DD;
Yenumula, PR.; Arterburn, D.E. Bariatric Surgery and the Risk of Cancer in a Large Multisite Cohort.
Ann. Surg. 2019, 269, 95-101. [CrossRef]

Dixon, ].B.; Zimmet, P.; Alberti, K.G.; Rubino, F. Bariatric Surgery: An IDF Statement for Obese Type 2
Diabetes. Diagbet, Med. 2011, 28, 628-642. [CrossRef]

Courcoulas, A.P; Belle, S.H.; Neiberg, R H.; Pierson, 5.K.; Eagleton, ].K.; Kalarchian, M.A.; DeLany, J.P;
Lang, W.; Jakicic, | M. Three-Year Qutcomes of Bariatric Surgery vs. Lifestyle Intervention for Type 2 Diabetes
Mellitus Treatment: A Randomized Clinical Trial. Jama Surg. 2015, 150, 931. [CrossRef]

Cummings, D.E.; Arterburn, D.E.; Westbrook, E.O.; Kuzma, ].N.; Stewart, 5.D.; Chan, C.P; Bock, S.N.;
Landers, |.T.; Kratz, M.; Foster-Schubert, K.E.; et al. Gastric Bypass Surgery vs Intensive Lifestyle and
Medical Intervention for Type 2 Diabetes: The CROSSROADS Randomised Controlled Trial. Digbetologia
2016, 59, 945-953. [CrossRef]

59



I Clin. Med. 2019, 8, 1220 16 0f 19

21.

22.

23.

24.

26.

27.

28.

29.

30.

31.

32.

34

36.

Ikramuddin, S.; Korner, ].; Lee, W.-].; Connett, ].E.; Inabnet, W.B.; Billington, C.]J.; Thomas, A.].; Leslie, D.B.;
Chong, K.; Jeffery, R W.; et al. Roux-En-Y Gastric Bypass vs Intensive Medical Management for the Centrol
of Type 2 Diabetes, Hypertension, and Hyperlipidemia: The Diabetes Surgery Study Randomized Clinical
Trial. JAMA 2013, 309, 2240, [CrossRef]

Mingrone, G.; Panunzi, S.; De Gaetano, A.; Guidone, C.; Iaconelli, A.; Nanni, G.; Castagneto, M.; Bornstein, S.;
Rubino, F. Bariatric-Metabolic Surgery versus Conventional Medical Treatment in Obese Patients with Type
2 Diabetes: 5 Year Follow-up of an Open-Label, Single-Centre, Randomised Controlled Trial. Lancet 2015,
386, 964-973. [CrossRef]

Rubino, F,; Nathan, D.M.; Eckel, R.H.; Schauer, P.R.; Alberti, K.G.M.M.; Zimmet, P.Z.; Del Prato, S.; Ji, L.;
Sadikot, 5.M.; Herman, W.H.; et al. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes:
A Joint Statement by International Diabetes Organizations. Diagbetes Care 2016, 39, 861-877. [CrossRef]
[PubMed]

Aminian, A.; Brethauer, S.A.; Andalib, A.; Nowacki, A.S.; Jimenez, A.; Corcelles, R.; Hanipah, ZN.;
Punchai, S.; Bhatt, D.L.; Kashyap, 5.R.; et al. Individualized Metabolic Surgery Score: Procedure Selection
Based on Diabetes Severity. Anir. Surg. 2017, 266, 650-657. [CrossRef] [PubMed]

Chen, ].-C.; Hsu, N.-Y.; Lee, W-].; Chen, 5.-C,; Ser, K.-H.; Lee, Y.-C. Prediction of Type 2 Diabetes Remission
after Metabolic Surgery: A Comparison of the Individualized Metabolic Surgery Score and the ABCD Score.
Surg. Obes. Relat. Dis. 2018, 14, 640-645. [CrossRef] [PubMed]

Ashrafian, H.; Bueter, M.; Ahmed, K.; Suliman, A.; Bloom, S.R.; Darzi, A.; Athanasiou, T. Metabolic Surgery:
An Evolution through Bariatric Animal Models: Metabolic and Bariatric Surgery Animal Models. QObes. Rev.
2010, 11, 907-920. [CrossRef] [PubMed]

Li, ].V,; Ashrafian, H.; Bueter, M.; Kinross, |.; Sands, C.; le Roux, C.W.; Bloom, S.R.; Darzi, A.; Athanasiou, T;
Marchesi, J.R; et al. Metabolic Surgery Profoundly Influences Gut Microbial-Host Metabolic Cross-Talk. Gut
2011, 60, 1214-1223. [CrossRef] [PubMed]

Izquierdo, A.G.; Crujeiras, A.B. Obesity-Related Epigenetic Changes After Bariatric Surgery. Front. Endocrinol.
2019, 10, 232. [CrossRef]

Ortega, EJ.; Mercader, ].M,; Catalan, V.; Moreno-Navarrete, ]. M.; Pueyo, N.; Sabater, M.; Gomez-Ambrosi, |.;
Anglada, R.; Fernandez-Formoso, J.A.; Ricart, W.; et al. Targeting the Circulating MicroRNA Signature of
Obesity. Clin. Chem. 2013, 59, 781-792. [CrossRef]

Alkandari, A.; Ashrafian, H.; Sathyapalan, T.; Sedman, P; Darzi, A.; Holmes, E.; Athanasiou, T.; Atkin, S.L.;
Gooderham, N.J. Improved Physiclogy and Metabolic Flux after Roux-En-Y Gastric Bypass Is Associated
with Temporal Changes in the Circulating MicroRNAome: A Longitudinal Study in Humans. Brizc Obes.
2018, 5, 20. [CrossRef]

Atkin, S.L.; Ramachandran, V.; Yousri, N.A.; Benurwar, M.; Simper, 5.C.; McKinlay, R.; Adams, T.D,;
Najafi-Shoushtari, 5.H.; Hunt, 5.C. Changes in Blood MicroRNA Expression and Early Metabolic
Responsiveness 21 Days Following Bariatric Surgery. Front. Endecrinol. 2019, 9, 773. [CrossRef]

Bae, Y.; Kim, Y; Lee, H.; Kim, H.; Jeon, ].5.; Noh, H.; Han, D.C.; Ryu, S.; Kwon, 5.H. Bariatric Surgery Alters
MicroRNA Content of Circulating Exosomes in Patients with Obesity. Obesity 2019, 27, 264-271. [CrossRef]
[PubMed]

Blum, A.; Yehuda, H.; Geron, N.; Meerson, A. Elevated Levels of MiR-122 in Serum May Contribute to
Improved Endothelial Function and Lower Oncologic Risk Following Bariatric Surgery. Isr. Med. Assoc.
J. Imaj 2017, 19, 620-624. [PubMed]

Guo, W.; Han, H.; Wang, Y.; Zhang, X.; Liu, 5.; Zhang, G.; Hu, 5. MiR-200a Regulates Rheb-Mediated
Amelioration of Insulin Resistance after Duodenal-Jejunal Bypass. Ini. ]. Obes. 2016, 40, 1222-1232.
[CrossRef] [PubMed]

Wei, G.; Yi, S.; Yong, D.; Shaozhuang, L.; Guangyong, Z.; Sanyuan, H. MiR-320 Mediates Diabetes Amelioration
after Duodenal-Jejunal Bypass via Targeting AdipoR1. Surg. Obes, Relat. Dis. 2018, 14, 960-971. [CrossRef]
[PubMed]

Hohensinner, PJ; Kaun, C.; Ebenbauer, B.; Hackl, M.; Demyanets, S.; Richter, D.; Prager, M.; Woijta, | ;
Rega-Kaun, G. Reduction of Premature Aging Markers After Gastric Bypass Surgery in Morbidly Obese
Patients. Obes. Surg. 2018, 28, 2804-2810. [CrossRef] [PubMed]

60



I Clin. Med. 2019, 8, 1220 17 of 19

37.

33.

40.

41.

42,

45.

46,

47.
48.

49.

50.

51.

52.

54.

56.

Hubal, M.].; Nadler, E.P; Ferrante, 5.C.; Barberio, M.D.; Suh, ].-H.; Wang, ].; Dohm, G.L.; Pories, W].;
Mietus-Snyder, M.; Freishtat, R.J. Circulating Adipocyte-Derived Exosomal MicroRNAs Associated with
Decreased Insulin Resistance after Gastric Bypass: Gastric Bypass Alters Exosomal MicroRNAs. Obesity
2017, 25, 102-110. [CrossRef] [PubMed]

Hulsmans, M.; Sinnaeve, P; Van der Schueren, B.; Mathieu, C.; Janssens, S.; Holvoet, . Decreased MiR-181a
Expression in Monocytes of Obese Patients Is Associated with the Occurrence of Metabolic Syndrome and
Coronary Artery Disease. |, Clin. Endocrinol. Metab. 2012, 97, E1213-E1218. [CrossRef] [PubMed]

Kwon, [.G.; Ha, TK.; Ryu, S.-W.; Ha, E. Roux-En-Y Gastric Bypass Stimulates Hypothalamic MiR-122 and
Inhibits Cardiac and Hepatic MiR-122 Expressions. J. Surg. Res. 2015, 199, 371-377. [CrossRef]

Lirun, K.; Sewe, M.; Yong, W. A Pilot Study: The Effect of Roux-En-Y Gastric Bypass on the Serum MicroRNAs
of the Type 2 Diabetes Patient. Obes. Surg. 2015, 25, 2386-2392. [CrossRef]

Mysore, R.; Ortega, F].; Latorre, ].; Ahonen, M.; Savolainen-Peltonen, H.; Fischer-Posovszky, F.; Wabitsch, M.;
Olkkonen, V.M.; Fernandez-Real, ].M.; Haridas, P.A.N. MicroRNA-221-3p Regulates Angiopoietin-Like 8
(ANGPTLS) Expression in Adipocytes. [. Clin. Endocrinol. Metab. 2017, 102, 4001-4012. [CrossRef]

Ortega, EJ.; Mercader, ].M.; Moreno-Navarrete, ].M.; Nonell, L.; Puigdecanet, E.; Rodriquez-Hermosa, ].L;
Rovira, O.; Xifra, G.; Guerra, E.; Moreno, M.; et al. Surgery-Induced Weight Loss Is Associated With the
Downregulation of Genes Targeted by MicroRNAs in Adipose Tissue. . Clin. Endocrinol. Metab. 2015, 100,
E1467-E1476. [CrossRef] [PubMed]

Ortega, EJ.; Moreno, M.; Mercader, ].M.; Moreno-Navarrete, ].M.; Fuentes-Batllevell, N.; Sabater, M;
Ricart, W,; Fernandez-Real, ].M. Inflammation Triggers Specific MicroRNA Profiles in Human Adipocytes
and Macrophages and in Their Supernatants. Clin. Epigenetics 2015, 7, 49. [CrossRef] [PubMed]

Wang, Y.; Wang, D.-S.; Cheng, Y.-5,; Jia, B.-L.; Yu, G.; Yin, X.-Q.; Wang, Y. Expression of MicroRINA-448
and SIRT1 and Prognosis of Obese Type 2 Diabetic Mellitus Patients After Laparoscopic Bariatric Surgery.
Cell. Physiol. Biochem. 2018, 45, 935-950. [CrossRef] [PubMed]

Wu, Q,; Li, ].V,; Seyfried, F; le Roux, C.W.; Ashrafian, H.; Athanasiou, T.; Fenske, W.; Darzi, A.; Nicholson, ] K.;
Holmes, E.; et al. Metabolic Phenotype-MicroRNA Data Fusion Analysis of the Systemic Consequences of
Roux-En-Y Gastric Bypass Surgery. Int. |. Obes. 2015, 39, 1126-1134. [CrossRef] [PubMed]

Lee, Y.; Kim, M.; Han, ].; Yeom, K.-H.; Lee, S.; Baek, 5.H.; Kim, V.N. MicroRNA Genes Are Transcribed by
RNA Polymerase II. Emnbo ]. 2004, 23, 4051-4060. [CrossRef] [PubMed]

Bartel, D.P. MicroRNAs. Celi 2004, 116, 281-297. [CrossRef]

Kim, V.N.; Han, J.; Siomi, M.C. Biogenesis of Small RNAs in Animals. Nat. Rev. Mol Cell Biol. 2009, 10,
126-139. [CrossRef]

Krol, ].; Loedige, I; Filipowicz, W. The Widespread Regulation of MicroRNA Biogenesis, Function and Decay.
Nat. Rev. Genet. 2010, 11, 597-610. [CrossRef]

Lim, L.P; Lau, N.C.; Carrett-Engele, I.; Grimson, A.; Schelter, ] M.; Castle, J.; Bartel, D.P; Linsley, P.S,;
Johnson, ].M. Microarray Analysis Shows That Some MicroRNAs Downregulate Large Numbers of Target
MRNASs. Nature 2005, 433, 769-773. [CrossRef]

Hausser, ].; Zavolan, M. Identification and Consequences of MiRNA-Target Interactions—Beyond Repression
of Gene Expression. Naf. Rev. Genet. 2014, 15, 599-612. [CrossRef]

Ebert, M.S.; Sharp, P.A. Roles for MicroRNAs in Conferring Robustness to Biological Processes. Cell 2012,
149, 515-524. [CrossRef] [PubMed]

Karbiener, M.; Fischer, C.; Nowitsch, 5.; Opriessnig, F; Papak, C.; Ailhaud, G.; Dani, C.; Amri, E.-Z;
Scheideler, M. MicroRNA MiR-27b Impairs Human Adipocyte Differentiation and Targets PPARy. Biochem.
Biophys. Res. Commnun. 2009, 390, 247-251. [CrossRef] [PubMed]

Plaisance, V.; Abderrahmani, A.; Perret-Menoud, V.; Jacquemin, P.; Lemaigre, F.; Regazzi, R. MicroRNA-9
Controls the Expression of Granuphilin/Slp4 and the Secretory Response of Insulin-Producing Cells, f. Biol.
Chemi, 2006, 281, 26932-26942. [CrossRef] [PubMed]

Lu, H.; Buchan, R.J.; Cook, 5.A. MicroRINA-223 Regulates Glut4 Expression and Cardiomyocyte Glucose
Metabolism. Cardicvasc. Res. 2010, 86, 410-420. [CrossRef] [PubMed]

Esau, C; Davis, S;; Murray, SE; Yu, X.X; Pandey, SK_; Pear, M.; Walls, L.; Booten, S.L.; Graham, M ;
McKay, R.; et al. MiR-122 Regulation of Lipid Metabolisin Revealed by in Vivo Antisense Targeting.
Cell Metab. 2006, 3, 87-98. [CrossRef] [PubMed]

61



I Clin. Med. 2019, 8, 1220 18 0f 19

57.

59.

60.

61.

62.

63.

64.

66.

67.

63.

69.

70.

71.

72.

74.

76.

77.

Oger, F.; Gheeraert, C.; Mogilenko, D.; Benomar, Y.; Molendi-Coste, O.; Bouchaert, E.; Caron, 5.;
Dombrowicz, D.; Pattou, F,; Duez, H.; et al. Cell-S5pecific Dysregulation of MictoRNA Expression in
Obese White Adipose Tissue. [. Clin. Endocrinol. Metab. 2014, 99, 2821-2833. [CrossRef]

Hilton, C.; Neville, M.J.; Karpe, F. MicroRNAs in Adipose Tissue: Their Role in Adipogenesis and Obesity.
Int, J. Obes, 2013, 37, 325-332. [CrossRef]

Trajkovski, M.; Hausser, ].; Soutschek, |.; Bhat, B.; Akin, A.; Zavolan, M.; Heim, M.H.; Stoffel, M. MicroRNAs
103 and 107 Regulate Insulin Sensitivity. Nature 2011, 474, 649-653. [CrossRef]

Arner, P.; Kulyté, A, MicroRNA Regulatory Networks in Human Adipose Tissue and Obesity. Nai. Reo.
Endocrinol. 2015, 11, 276-288. [CrossRef]

Guay, C.; Regazzi, R. Circulating MicroRN As as Novel Biomarkers for Diabetes Mellitus. Nat. Rev. Endocrinol.
2013, 9, 513-521. [CrossRef]

Rottiers, V.; Niir, A M. MicroRNAs in Metabolism and Metabolic Disorders. Nat. Rev. Mol. Cell Biol. 2012,
13, 239-250. [CrossRef] [PubMed]

Xie, H.; Lim, B.; Lodish, H.F. MicroRNAs Induced During Adipogenesis That Accelerate Fat Cell Development
Are Downregulated in Obesity. Diabetes 2009, 58, 1050-1057. [CrossRef] [PubMed]

Hulsmans, M.; De Keyzer, D.; Holvoet, P. MicroRNAs Regulating Oxidative Stress and Inflammation in
Relation to Obesity and Atherosclerosis. Faseb f. 2011, 25, 2515-2527. [CrossRef] [PubMed]

Bramer, W.M.; Rethlefsen, M.L.; Kleijnen, |.; Franco, O.H. Optimal Database Combinations for Literature
Searches in Systematic Reviews: A Prospective Exploratory Study. Sysf. Rev. 2017, 6, 245. [CrossRef]
[PubMed]

Zhu, H.; Leung, S. Identification of Potential MictoRNA Biomarkers by Meta-Analysis. In Computational
Drug Discovery and Design; Gore, M., Jagtap, U.B., Eds.; Springer: New York, NY, USA, 2018; Volume 1762,
pp. 473-484. [CrossRef]

Vlachos, 1.S.; Zagganas, K.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.;
Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-MiRPath v3.0: Deciphering MicroRNA Function with
Experimental Support. Nucleic /Acids Res. 2015, 43, W460-W466. [CrossRef] [PubMed]

The FANTOM Consortium; de Rie, D.; Abugessaisa, L; Alam, T.; Arner, E.; Arner, P.; Ashoor, H.; Astrom, G.;
Babina, M.; Bertin, N.; et al. An Integrated Expression Atlas of MiRNAs and Their Promoters in Human and
Mouse. Nat. Biotechnol. 2017, 35, 872-878. [CrossRef]

Martin-Nunez, G.M.; Cabrera-Mulero, A.; Alcaide-Torres, |.; Garcia-Fuentes, E.; Tinahones, EJ.; Morcillo, S.
No Effect of Different Bariatric Surgery Procedures on LINE-1 DNA Methylation in Diabetic and Nondiabetic
Morbidly Obese Patients. Surg. Obes. Relat. Dis. 2017, 13, 442-450. [CrossRef]

Balasar, O.; Cakur, T.; Erkal, O.; Aslaner, A.; Cekic, B.; Uyar, M.; Bilbiiller, N.; Orug, M.T. The Effect of
Rs9939609 FTO Gene Polymorphism on Weight Loss after Laparoscopic Sleeve Gastrectomy. Surg. Endosc.
2016, 30, 121-125. [CrossRef]

Kékela, P; Jaaskeldinen, T.; Torpstrom, |.; llves, 1.; Venesmaa, S.; Paakkénen, M.; Gylling, H.; Paajanen, H.;
Uusitupa, M.; Pihlajamaki, ]. Genetic Risk Score Does Not Predict the Outcome of Obesity Surgery. Obes. Surg.
2014, 24, 128-133. [CrossRef]

Zhang, W.; Lu, W.; Ananthan, S.; Suto, M.].; Li, Y. Discovery of Novel Frizzled-7 Inhibitors by Targeting the
Receptor’s Transmembrane Domain. Oncotarget 2017, 8. [CrossRef]

Christodoulides, C.; Scarda, A.; Granzotto, M.; Milan, G.; Dalla Nora, E.; Keogh, J.; De Pergola, G.; Stirling, H.;
Pannacciulli, N.; Sethi, |.K.; et al. WNT10B Mutations in Human Obesity. Diabetologia 2006, 49, 675-684.
[CrossRef] [PubMed]

Mayas, M.D.; Ortega, FJ.; Macias-Gonzélez, M.; Bernal, R.; Gomez-Huelgas, R.; Ferndndez-Real, ].M.;
Tinahones, FJ. Inverse Relation between FASN Expression in Human Adipose Tissue and the Insulin
Resistance Level. Nutr. Metab, 2010, 7, 3. [CrossRef] [PubMed]

Wang, D.; DuBois, R.N. Associations Between Obesity and Cancer: The Role of Fatty Acid Synthase. fnci J.
Natl, Cancer Inst. 2012, 104, 343-345. [CrossRef] [PubMed]

O’Connell, RM_; Rao, D.S.; Baltimore, D. MicroRNA Regulation of Inflammatory Responses. Annu. Rev.
Tmmunol. 2012, 30, 295-312. [CrossRef] [PubMed]

Moore, C.5.; Rao, V.T.S,; Durafourt, B.A.; Bedell, B.].; Ludwin, SK.; Bar-Or, A.; Antel, [.P. MiR-155 as
a Multiple Sclerosis—Relevant Regulator of Myeloid Cell Polarization. Ann. Newrol. 2013, 74, 709-720.
[CrossRef]

62



I Clin. Med. 2019, 8, 1220 19 of 19

78.

79.

80.

81.

82.

83.

86.

87.

83.

89,

90.

Faraoni, I; Antonetti, ER.; Cardone, ].; Bonmassar, E. MiR-155 Gene: A Typical Multifuncticnal MicroRNA.
Biochim. Biophys. Acta Bba Mol. Basis Dis. 2009, 1792, 497-505. [CrossRef]

Ding, S.; Huang, H.; Xu, Y; Zhu, H.; Zhong, C. MiR-222 in Cardiovascular Diseases: Physiology and
Pathology. Biomed Res. Inf. 2017, 2017. [CrossRef]

Li, Y.; Kowdley, K.V. Method for MicroRNA Isolation from Clinical Serum Samples. Anal. Biochem, 2012, 431,
69-75. [CrossRef]

Kroh, EM.; Parkin, R.K.; Mitchell, P.S.; Tewari, M. Analysis of Circulating MicroRNA Biomarkers in Plasma
and Serum Using Quantitative Reverse Transcription-PCR (QRT-PCR). Methods 2010, 50, 298-301. [CrossRef]
Chugh, P,; Dittmer, D.P. Potential Pitfalls in MicroRNA Profiling. Wiley Interdiscip. Rev. Rua 2012, 3, 601-616.
[CrossRef]

Git, A_; Dvinge, H.; Salmon-Divon, M.; Osborne, M.; Kutter, C.; Hadfield, ].; Bertone, P; Caldas, C. Systematic
Comparison of Microarray Profiling, Real-Time PCR, and next-Generation Sequencing Technologies for
Measuring Differential MicroRNA Expression. RNA 2010, 16, 991-1006. [CrossRef] [PubMed]

Sato, F; Tsuchiya, S.; Terasawa, K.; Tsujimoto, C. Intra-Platform Repeatability and Inter-Platform
Comparability of MicroRNA Microarray Technology. PLoS ONE 2009, 4, e5540. [CrossRef] [PubMed]
Schwarzenbach, H.; da Silva, A.M.; Calin, G.; Pantel, K. Which Is the Accurate Data Normalization Strategy
for MicroRNA Quantification? Clin. Chem. 2015, 61, 1333-1342. [CrossRef] [PubMed]

Vandesompele, |.; De Preter, K.; Pattyn, E.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate
Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control
Genes. Genrome Biol. 2002, 3, RESEARCHOQ034. [CrossRef] [PubMed]

Huang, R.S.; Gamazon, ER.; Ziliak, D.; Wen, Y.; Im, HK,; Zhang, W.; Wing, C.; Duan, S.; Bleibel, W.K.;
Cox, N .J.; et al. Population Differences in MicroRNA Expression and Biological Implications. Ruaz Biol. 2011,
8,692-701. [CrossRef] [PubMed]

Rawlings-Goss, R.A.; Campbell, M.C.; Tishkoff, S.A. Global Population-Specific Variation in MiRNA
Associated with Cancer Risk and Clinical Biomarkers. Bmc Med. Genom. 2014, 7, 53. [CrossRef] [FubMed]
Cui, C,; Yang, W.; Shi, ].; Zhou, Y,; Yang, ].; Cui, Q.; Zhou, Y. Identification and Analysis of Human Sex-Biased
MicroRNAs, Genom, Proteom. Bicinform. 2018, 16, 200-211. [CrossRef] [PubMecd]

Guo, L.; Zhang, Q.; Ma, X.; Wang, ].; Liang, T. MiRNA and MRNA Expression Analysis Reveals Potential
Sex-Biased MiRNA Expression. Se¢i. Rep. 2017, 7, 39812, [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commeons Attribution
BY

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

63



Original Article

Wojciechowska G, Szczerbinski L, Kretowski M, Niemira M, Hady HR, Kretowski
A. (2022)

I I Exploring microRNAs as predictive biomarkers for type 2 diabetes mellitus
remission after sleeve gastrectomy: A pilot study.

Obesity
doi: 10.1002/0by.23342

64



Received: 27 July 2021 Revised: 5 November 2021 Accepted: 5 November 2021

DOI: 10.1002/0by.23342

ORIGINAL ARTICLE

Obesity Bioclogy and Integrated Physiology

Exploring microRNAs as predictive biomarkers for type 2
diabetes mellitus remission after sleeve gastrectomy: A pilot

study

Gladys Wojciechowska1

| Lukasz Szczerbinski? | Marek Kretowski® |

Magdalena Niemira! | Hady Razak Hady* | Adam Kretowski-2

Clinical Research Centre, Medical
University of Biatystok, Biatystok, Poland

’Department of Endocrinalogy,
Diabetology and Internal Medicine,

Medical University of Biatystok, Biatystok,

Poland

3Faculty of Computer Science, Biatystok
University of Technology, Biatystok,
Poland

“1st Clinical Department of General and
Endocrine Surgery, Medical University of
Biatystok, Bialystok, Poland

Correspondence

Gladys Wojciechowska, Clinical Research
Centre, Medical University of Bialystok,
M. Sktodowskiej-Curie 24a, 15-276
Biatystok, Poland.

Email: gladys.waojciechowska@umb.edu.pl

Funding information

This research was conducted within a
project that has received funding from the
European Union's Horizon 2020 research
and innovation programme under the
Marie Sktodowska-Curie grant agreement
No 754432 and the Polish Ministry of
Science and Higher Education, from
financial resources for science in 2018-
2023 granted for the implementation

of an international co-financed project.
This research was also suppaorted by the
Medical University of Bialystok funds
through the subsidy grant no: SUB/1/
DN/19/008/1196.

INTRODUCTION

Abstract

Objective: This study aimed to evaluate microRNAs (miRNAs) as predictive biomark-
ers for type 2 diabetes (T2D) remission 12 months after sleeve gastrectomy (SG).
Methods: A total of 179 serum miRNAs were profiled, and 26 clinical variables were
collected from 46 patients. Two patients were later excluded because of hemalysis,
and six patients with unclear remission status were set aside to evaluate the predic-
tion models. The remaining 38 patients were included for model building. Variable se-
lection was done using different approaches, including Least Absolute Shrinkage and
Selection Operator (LASSQ). Prediction models were then developed using LASSO
and assessed in the validation set.

Results: A total of 26 out of 38 patients achieved T2D remission 12 months after SG.
The prediction model with only clinical variables misclassified two patients, which
were correctly classified using miRNAs. Twa miRNA-only models achieved an accu-
racy of one but performed poorly for the validation set, The best miRNA model was
a mixed model (accuracy: 0.974) containing four miRNAs (hsa-miR-32-5p, hsa-miR-
382-5p, hsa-miR-1-3p, and hsa-miR-21-5p) and four clinical variables (T2D medication,
sex, age, and fasting blood glucose). These miRNAs are involved in pathways related
to ohesity and insulin resistance.

Conclusions: This study suggests that four serum miRNAs might be predictive bio-
markers for T2D remission 12 months after SG, but further validation studies are
needed.

H THE
pOb“e.SIty O%’SECSE}’V WILEY

(1-3). Itis a less complicated procedure and it has fewer surgery com-
plications compared with other methods (4-7). Although SG is com-

Sleeve gastrectomy (SG) is the most common bariatric surgery pro- parable to other methods for weight loss and weight regain (8-10),

cedure in Poland and other countries, including the United States SG has a lower success rate for type 2 diabetes (T2D) remission

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. Obesity published by Wiley Periodicals LLC on behalf of The Obesity Society (TOS).
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(4,11). Therefore, identifying patients who can benefit the most from
5G is valuable for effective treatment.

Different prediction models have been developed to predict
T2D remission after bariatric surgery (12). However, most models
were developed using cohorts of surgery methods other than SG
or a limited number of SG patients (12). A 2019 study found that
these models overestimated diabetes remission in SG patients with
varying degrees (12). Better prediction models are needed for SG
patients.

There is increasing interest in using biomarkers as predictive
variables. A 2016 study used structural genetic variants as predic-
tive biomarkers for T2D remission (13). We are interested in study-
ing microRNA (miRNA), an epigenetic factor that regulates protein
expression through destabilization of target mRNA (14). Epigenetic
factors were reperted to have a relationship with bariatric surgery
outcomes {15,16). However, the predictive value of miRNAs for sur-
gery outcomes has not been explored before, to cur knowledge.

We selected patients with diabetes and cbesity from a larger
cohort of the Biatystok Bariatric Surgery Study (BBSS), an ongoing
longitudinal study of Eastern Polish SG patients. Presurgery serum
miRNA levels were collected for 46 diabetic patients with T2D re-
mission status 12 months post surgery. We aim to explore whether
miRNA information gives any added value to clinical data for pre-
dicting T2D remission after SG.

Additionally, we implemented machine learning approaches for
variable selection and developed the prediction models. We pro-
filed 179 serum miRNAs and collected 26 clinical variables, including
these used in other T2D prediction models. To reduce data dimen-
sionality, we chase Least Absolute Shrinkage and Selection Operator
(LASSO) for variable selection and to develop classifiers.

Therefore, this pilot study aims to evaluate the added value of
including miRNAs as predictive biomarkers for T2D remission after

SG through machine learning approaches {Figure 1).

METHODS
Study participants

Patients were recruited from the BBSS (17), in which 321 Polish
patients with obesity had undergone bariatric surgery, including
SG, from 2016 to 2019. The inclusion criteria for surgery were BM|
> 40 kg/m” or BMI 2 35 with comorbidities. The exclusion crite-
ria included prior bariatric surgery, substance abuse, uncontrolled
psychiatric illness, expected lack of compliance, or advanced can-
cer (17). A subset of the 5G cohort had T2D based on the American
Diabetes Association criteria and had T2D remission status 12
months post surgery (n = 46). Remission status was determined
using the American Society of Metabolic and Bariatric Surgery
(ASMBS) criteria, based on T2D medication status, hemoglobin
Alc (HbAlc), and fasting glucose 12 months after surgery {18).
The ASMBS criteria creates five remission groups (18). However,

we regrouped patients into a binary remission status because of

Study Importance

What is already known?

» Sleeve gastrectomy (SG) is an effective weight loss sur-
gery that may result in type 2 diabetes (T2D) remission.

» Prediction models for T2D remission have been built for
surgery types other than SG and have not included mi-
croRNAs (miRNAs).

What does this study add?

» Four serum miRNAs (hsa-miR-32-5p, hsa-miR-382-5p,
hsa-miR-1-3p, and hsa-miR-21-5p) that might predict
T2D remission 12 months after SG were identified.

» These miRNAs are involved in pathways related to obe-

sity and insulin resistance.

How might these results change the direction of
research or the focus of clinical practice?

» Biomarker research could facus on these miRNAs and
validate them in larger cohorts to evaluate their predic-
tive value.

» The miRNAs could also be studied further to understand
molecular subtypes of T2D patients with obesity.

the sample size: patients with "complete” and “partial” remission

"o

were grouped into “remission.” “Improvement,” “unchanged,” and
“recurrence” were grouped into “nonremission.” Six patients had
unclear remission status due to missing information post surgery.
We held out these six patients for model evaluation. All partici-
pants provided informed consent before the study. The study
was conducted in accordance with the Declaration of Helsinki,
and the protocol was approved by the Ethics Committee of the
Medical University of Biatystok {project identification code: R-1-

002/546/2015) (17).

Sample preparation and miRNA extraction

Serum samples were obtained between 2 and 4 weeks before
surgery from patients in the overnight fasting state. Blood sam-
ples were collected in Sarstedt S-Monovette tubes (Sarstedt, Inc.,
Niimbrecht, North Rhine-Westphalia, Germany) with separator gel.
The samples were allowed to clot for at least 30 minutes and were
then centrifuged for 10 minutes at 2,500 rpm. Serum samples were
immediately stored at —80°C until use.

RNA was isolated using the miRNeasy Serum/Plasma Advanced
Kit {QIAGEN, Hilden, Germany). Three RNA spike-ins {(UniSP2,
UniSP4, and UniSP5) were added to the kit's “RPL buffer” as RNA

isolation controls. Serum volumes of 200 ul were used for isolation,
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FIGURE 1 Overview of study design. {A) General framework of patient stratification based on miRNAs and clinical variables. (B)
The study’s approach for variable selection and building prediction models with miRNAs and clinical variables. {C) The approach for
evaluating the prediction models using patients with unclear remission status. CV, cross validation; LASSO, Least Absolute Shrinkage

and Selection Operator; LOOCY, leave-one-out cross validation; miRNA, microRNA; T2D, type 2 diabetes [Color figure can be viewed at

wileyonlinelibrary.com]

and 20 ul of nuclease-free water was used for elution. A no-template
sample (nuclease-free water) was also included to evaluate RNA iso-
lation quality.

Quality control of miRNA extraction
The miRCURY locked nucleic acid (LNA) miRNA QC PCR Panel

(QIAGEN) was used to assess miRNA quality, monitor comple-

mentary DNA (cDNA) synthesis, evaluate hemolysis, and assess

polymerase chain reaction (PCR) efficiency. For this quality control
{QC) panel, 2 uL of miRNA elute was used for 10 uL of reverse tran-
scription (RT) reaction using the miRCURY LNA RT Kit (QIAGEN).
Two spike-ins were used for ¢DNA synthesis (UniSpé and cel-
miR-39). A total of 1.5 uL of cDNA was used for the QC panel. Two
samples were later excluded because of hemolysis (final n = 44), as
indicated by a difference in cycle threshold (Ct) values between miR-
23a-3p and miR-451a of more than five {19). PCR was done using the
Roche LightCycler 480 Instrument (Roche, Basel, Switzerland) with
SYBR Green dye.
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miRNA profiling

Using the Serum/Plasma miRCURY LNA miRNA Focus PCR Panel
(QIAGEN), profiling was done with a 96-well plate farmat {20}
(Supporting Information Table S1). For this panel, 4 uL of miRNA
elute was used for 20-uL cDNA synthesis, along with the two spike-
ins for cDNA synthesis. The whole cDNA reaction was used for pro-
filing. No-template controls were also used to evaluate background
miRNA levels. PCR was done using the Roche LightCycler 480
Instrument with SYBR Green dye.

Data preprocessing

Raw miRNA data were prepracessed using the GeneGlobe Data
Analysis Center (QIAGEN; geneglobe.qgiagen.com) to remove
miRNAs below a Ct cutoff {Ct = 35) and to apply interplate
calibration. The processed data were then normalized using a
global mean normalization. There were noc missing values for
miRNAs.

A total of 43 baseline clinical variables were collected from pa-
tients, including blood hiochemical parameters, bloed morphology
measures, and anthropometric measurements, We selected 26 clin-
ical variables with missingness less than 10%. Median imputation
was used for missing values. The total number of clinical and miRNA

variables was 205.

Variable selection

Ten unique variable sets were created: six sets with only miRNA
variables, two with only clinical variables, and twec sets with
miRNA and clinical variables. Variables were normalized to obtain
7 scores.

Qut of the 44 patients with miRNA data, six patients with unclear
remission status were set aside for model evaluation. Therefare, 38
patients with clear remission status were used for variable selection

and building classifiers.

Selecting serum miRNA variables

Six miRNA-only variable sets were created using different meth-
ods. One set contains all 179 miRNAs, another includes miRNAs
from statistical testing, and four other sets contain LASSO-
selected miRNAs,

miRNA selection using statistical significance and fold change

Fold change is the ratio of relative normalized miRNA expression
between remission groups. Unpaired t tests were used to calculate
p values. Four miRNAs with p < 0.05 and fold regulations of at least
1.5 were selected in this variable set.

Variable selection with LASSO

LASSO (21} with repeated 10-fold cross validation (500 repeats) was
built using all 179 miRNAs. A total of 20 miRNAs had nonzero coef-
ficients and they were ranked based on their importance. The top
five, ten, fifteen, and all nonzero miRNAs were selected as four sets
of LASS5QO-selected miRNAs.

Selecting pre-surgery clinical variables

Two sets of clinical variables were created: one set contains all 26
variables, and another has LASSQO-selected variables. The LASSO
selection process is the same as that for miRNAs. Repeated cross
validation with 10 folds and 500 repeats was done using all 26 clini-
cal variables, and then the resulting nanzero variables were selected.

Selecting serum miRNA and clinical variables

Two sets of miRNA and clinical variables were created: one set con-
tains all available variables (205 variables), and another has LASSO-
selected variables. The LASSO selection process was done using all
variables with the same repeated cross-validation approach. The
nonzero variables were selected.

Prediction models

Ten LASSO models were built with each variable set. A leave-one-
out cross-validation approach was used. Madel performances were
obtained using caret and epiR in R (R Foundation, Vienna, Austria),
and models were compared based on their accuracy.

Model evaluation using six patients with unclear
remission status

Remissicn labels were determined using available postsurgery clini-
cal measures. The label decision was first made based on the dis-
continuation of T2D medicines. Then HbAlc and fasting glucose
information was considered. For prediction, we first applied the
same median imputation and z score scalar used for the model-
building data. Then prediction was made using four models: aone
clinical-only model, one clinical and miRNA model, and two miRNA
madels {Supporting Information Table $2). We then compared the
prediction with their remission labels.

Correlation analysis

Pearson correlation was done to evaluate the relationship between
clinical variables and miRNAs hsa-miR-32-5p, hsa-miR-382-5p,
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hsa-miR-1-3p, and hsa-miR-21-5p. Multiple testing correction was done
using false discovery rate (FDR). Two plots for unadjusted and adjusted

p values were made using ggcorrplot package in R (R Foundation).

Pathway analysis

Pathway analysis was done for miRNAs hsa-miR-32-5p, hsa-miR-
382-5p, hsa-miR-1-3p, and hsa-miR-21-5p. The DIANA miRPath
version 3 software (http://www.microrna.gr/miRPathv3) was used
to identify experimentally reported target genes and evaluate the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.

RESULTS
Patient demographics and miRNA profiles

Six clinical variables were significantly associated with remission
after SG: T2D medication; age; HbAlc,; and fasting plasma glucose,
as well as plasma glucese 30 and 60 minutes after oral glucose toler-
ance test (OGTT; Table 1). The remission group had a much lower
proportion of patients taking diabetes medication before surgery
(remission vs. nanremission: 12% vs. 83.3%, adjusted p =0.003). The
remission group was also significantly younger and had lower plasma
glucose and lower HbAlc. Additicnally, the remission group had
higher plasma insulin and took fewer medications for chronic dis-
eases, but the relationships were not significant after FDR (Table 1).

A total of 179 circulating miRNAs were profiled from serum sam-
ples collected before surgery. None of the miRNAs was significant
between remission and nonremission groups after multiple testing
correction using FDR (Supporting Information Table S1). However,
eight miRNAs had unadjusted p < 0.05, and four of them had a fold
regulation of at least 1.5 {remission vs. nonremission group: upreg-
ulation = hsa-miR-382-5p, hsa-miR-409-3p; downregulation = hsa-
miR-375, hsa-miR-1-3p, respectively).

Variable selection and modeling results

Ten variable sets were created based on different variable selec-
tion processes {Table 2). One set for miRNAs contained the four
significantly differentially expressed miRNAs (GeneGlobe miRNAs:
hsa-miR-382-5p, hsa-miR-409-3p, hsa-miR-375, and hsa-miR-1-3p).
LASSO selected 20 out of 172 miRNAs after repeated cross valida-
tion, including three out of 4 significant miRNAs (hsa-miR-382-5p,
hsa-miR-375, and hsa-miR-1-3p). For clinical variables, LASSO se-
lected four out of twenty-six variables: T2D medication, age, fasting
plasma glucose, and sex. When all variables were provided, LASSO
chose the same four clinical variables (T2D medication, sex, age, and
fasting plasma glucose) and four miRNAs (hsa-miR-1-3p, hsa-miR-
21-5p, hsa-miR-32-5p, and hsa-miR-382-5p; Table 2, set 4).

Obesity [ls SRS SR

Among the 10 prediction models, classifiers with miRNA vari-
ables performed best. Models with 10 or 15 miRNAs achieved an
accuracy of 1(95% Cl: 0.91-1; Table 2). Models with only clinical vari-
ables misclassified two nonremission patients, with an accuracy of
0.947 (95% Cl: 0.82-0.99; Tables 2 and 3). When four miRNAs were
added into the clinical model, patient 1 was correctly predicted, but
not patient 2 (Figure 2A; Table 3). Patient 2 was later correctly classi-
fied in the miRNA-only models, and no other misclassifications were
found (Figure 2B; Table 3).

Evaluating prediction models using six patients with
unclear remission status

Four classifiers were selected for evaluation: a clinical-only
model, a mixed model with miRNA and clinical variables, and two
miRNA-only models (Table 4; Supporting Information Table 52).
Models with clinical variables agreed the most with postsurgery
data (Table 4). All models predicted patient A as nonremission,
but postsurgery data suggested remission. All miRNA models pre-
dicted nonremission for patient C. Postsurgery values were within
the remission group, but this patient had missing medication in-
formation. The miRNA-only models had increasing disagreement
with postsurgery data, indicating overfitting with the training
data.

Evaluating the four predictive miRNAs (hsa-miR-32-
5p, hsa-miR-382-5p, hsa-miR-1-3p, hsa-miR-21-5p)

Four miRNAs that improved prediction for clinical models had sig-
nificant correlations with glucose measures and HbAlc, but net with
other clinical measures (Figure 3; Supporting Information Figure S1).
The miRNA hsa-miR-382-5p was significantly positively correlated
with HbA1c (r = 0.432) and plasma glucose {r = 0.485 for fasting
and r = 0.35% for 30 minutes during QGTT). The relationship with
fasting plasma glucose was maintained after FDR (Figure 3). There
were other significant correlations between miRNA and clinical vari-
ables, but they were not significant after FDR; for example, fasting
plasma glucose with hsa-miR-32-5p {r = -0.354) and hsa-miR-21-5p
{r = -0.346), as well as hemoglobin cell count with hsa-miR-21-5p
{r = =0.456). The miRNA hsa-miR-1-3p was not significantly corre-
lated with any of the selected clinical variables. The miRNA hsa-miR-
32-5p was positively correlated with hsa-miR-1-3p (r = 0.393) and
hsa-miR-21-5p (r = 0.362) but was no longer significant after FDR.

Pathway analysis was done for these miRNAs using the DIANA
miRPath version 3 software, Three out of four miRNAs regulated 39
KEGG pathways, including 19 signaling pathways related to obesity
and insulin resistance (Table 5). There was no information for hsa-
miR-1-3p in this database. Within these 19 pathways, hsa-miR-32-5p
regulated 253 genes, hsa-miR-21-5p regulated 330 genes, and hsa-
miR-382-5p regulated 73 genes.
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TABLE 1 Baseline clinical data from patients measured before surgery

Variable

No. of patients

Age at time of SG (y)

BMI before SG (kg/m?)

Percentage of body fat before 5G (%)
Fasting blood insulin before SG (IU/mL)

Plasma insulin measured at 30 min during OGTT (n =
35; IU/ml)

Plasma insulin measured at 60 min during OGTT (n =
35; IU/mL)

Plasma insulin measured at 120 min during OGTT (n =

35; IU/mL)
Number of chronic diseases before SG ({1 or more)

Number of chronic disease medications before SG (2
or more)

HbA1c before SG (%)
Fasting blood glucose before SG (mg/dL)

Plasma glucose measured at 30 min during OGTT (h =
35; mg/dL)

Plasma glucose measured at 60 min during OGTT (h =
35; mg/dL)

Plasma glucose measured at 120 min during OGTT (n
= 35; mg/dL)

Bilirubin before SG (mg/dL)

C-reactive protein before SG (mg/L)
Cholesterol before SG (mg/dL)
Triglyceride before SG (mg/dL)
High-density lipoprotein before SG (mg/dL}
Low-density lipoprotein before SG (mg/dL}
White blood cell count before SG (10°/uL)
Red blood cell count before SG (10%/ul)
Platelet blood count before 5G (10%/ul)
Hemoglobin cell count before SG (g/dL)
Male sex

Diabetes medication before 5G (n = 37)

p value

Remission Nonremission p value {adj)
26 12

45.5(38.25;54) 58 (56.25:65.25) 1] 0.004
46.87 (43.33;50.77) 45.87 (43.45;52.75) 0.975 0.975
47.1(44.77;50.58) 49.4 (44.83;51.4) 0.46 0.594
34.55(29.53;53.57) 34.72 (27.55;43.52) 0.396 0.567
128.08 (109.6;173.73) 74.08 (61.61;126.53) 0.031 0.091
159.18 (146.12;231.63) 123.27 (73.27;168.24) 0.213 0.395
121.86(82.54;243.84) 90.56 (52.09;105.67) 0.045 0.118
19 (73%) 12 {100%) 0.084 0.546
12 (46%) 12 (100%) 0.017 0.216
6.4(5.9:6.88) 7.1 (6.65,8.25) 0.005 0.021
132.5(123.25;143.5) 154.5 (146.75;178.75) 0 0.004
232.5(194.5;239) 248 (235;271) 0,011 0.042
248 (224.75;282.25) 298 (283:315) 0.002 0.012
194.5 (159.75;218.25) 225(183;243) 0.186 0.395
0.47 {0.36:0.59} 0.38(0.3;,0.57) 0.307 0.499
5.89(2.62;10.53) 3.92(1.69;10.24) 0.48 0.594
190 (165.5;214) 184 (152.5;203.25) 0.387 0.567
146 (131.25;231) 163(126;225) 0.888 0.923
39.5 (35;45) 44.5(37.75;53.5) 0.209 0.395
118.5 (97.12;146) 103.95(82.83;133.75) 0.272 0.471
7.95 (6.65;9.07) 8.2(7.5;8.62) 0.753 0.879
498 (4.7:5.26) 5.07 (4.82:5.29) 0777 0.879
224 (203.75;263) 209.5(190;283.75) 0414 0.567
14.35 (13.25;15.05) 14.45 (13.3;15.05) 0.826 0.895
16 (61.5%) 10 (83.3%) 0.333 0.546
3(12%) 10 (83.3%) 0 0.003

Note: Values show the median (first;third quartiles) or the number of patients and percentages. p values are shown for the ;(2 test (categorical
variables) and Kruskal-Wallis test {continuous variables). Rows with p < 0.05 are shown in bold. Multiple testing correction was done using the false

discovery method. If not otherwise stated, n = 38.

Abbreviations: ad], adjusted; OGTT, oral glucose tolerance test; sleeve gastrectomy.

DISCUSSION

This pilot study evaluated miRNAs as predictive biomarkers and
used machine learning approaches to select the mast potential miR-
NAs and for model building. We found that miRNAs might improve
T2D remission prediction and that they are best used with clinical
variables. We considered all miRNAs because statistically significant
variables are not always good predictive variables (22).

Qur clinical model, based on T2D medication, age, sex, and fast-

ing plasma glucose, misclassified two nonremission patients. Both

patients had similar presurgery conditions: they did not take any
T2D medications before surgery, and they were in their 60s, Patient
1 needed T2D medicines after surgery; therefore, this patient had a
nonremission status. In contrast, patient 2 seemed to be borderline
partial remission after surgery. The second patient’s fasting blood
glucose was only three points above the upper limit for partial remis-
sion {<125 mg/dL). Therefore, the clinical models well predicted that
patient 2 could achieve remission after surgery.

Adding miRNA information improved prediction for patient 1.
When the miRNAs hsa-miR-32-5p, hsa-miR-382-5p, hsa-miR-1-3p,
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FIGURE 2 Adding miRNA information increases model accuracy. (A) Two nonremission patients (highlighted as dark red) were
misclassified in a model with four clinical variables (accuracy = 0.947). One patient was correctly classified when four miRNAs were
added (accuracy = 0.974). (B) The second patient was correctly classified in an miRNA-only model (using 10 miRNAs, accuracy = 1). Other
patients remained correctly classified. miRNA, microRNA; NoenRem, nonremission; Rem, remission

and hsa-miR-21-5p were added into the clinical model, patient 1
was correctly predicted to have nonremission. Patient 2 was still
predicted as remission. When 10 or 15 miRNAs were used instead
of clinical variables, both patients were classified as nonremission.
Considering that patient 2 seemed to be borderline remission, the
model with both clinical variables and miRNAs appears to be most
accurate,

Data from the six patients with unclear remission status also
agree that clinical variables are essential in the prediction model.
Madels with clinical predictors matched the most with postsurgery
information. Using only miRNAs increased the disagreement be-
tween prediction and postsurgery data. Although more samples are
needed to confirm, this suggests that our miRNA-only models are
likely to be an overfit, and clinical variables should be kept in pre-
diction models.

When available, miRNA information can help improve prediction
for difficult patients and provide additional information to poten-
tially imprecise clinical measures. Two out of four variables used
in our clinical model can be inaccurate: fasting plasma glucose and
T2D medication information. We requested for our patients to fast

before the OGTT but we could not guarantee that they genuinely

fasted. T2D medication was obtained through the patient question-
naire, which is subject to recall bias.

Qur prediction models can help decision-making for newly di-
aghosed T2D patients who qualify for SG. Some of our patients
were unaware of their T2D status and were diagnosed during their
presurgery visit, which might explain the relatively low percentage
of patients taking T2D medication. We found that mast patients
wha did not report taking T2D medication achieved remission after
SG, but not everyone. SG is a simpler surgery procedure but it has
a lower T2D remission rate than Roux-en-Y gastric bypass (RYGB)
{4,11). Therefore, deciding on bariatric surgery for new T2D patients
is not straightforward. Our prediction models might help predict
whether SG would result in rapid T2D remission or not for these
patients.

Previous prediction models, which used similar clinical variables,
predicted remission in SG patients with sensitivity and specificity
up to 0.92 and 0.83, respectively (12). Our clinical model with four
variables achieved sensitivity and specificity of 0.83 and 1, respec-
tively, and adding four miRNAs increased the sensitivity to 0.917.
Confirmation in external cohorts is vital to confirm the usefulness

of our models.
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FIGURE 3 Significant Pearson correlations between selected miRNA and clinical variables. The analysis was done using R packages
Hmisc and ggcorrplot. Nonsignificant correlations based on (A) p < 0.05 and (B) adjusted p < .05 are set to blank. Red boxes indicate
positive correlations, whereas blue boxes represent negative correlations. BIL, bilirubin levels; CHOL, cholestercl levels; CRP, C-reactive
protein levels; GLU_O, fasting blood glucose levels; GLU_30, plasma glucose levels measured at 30 minutes during OGTT; GLU_60, plasma
glucose levels measured at 60 minutes during OGTT; GLU_120, Plasma glucose levels measured at 120 minutes during OGTT; HbAlc,
hemoglobin Alc; HDL, high-density lipoprotein levels; HGB, hemoglobin cell count; INS_0, fasting blood insulin levels; INS_30, plasma
insulin levels measured at 30 minutes during OGTT; INS_60, plasma insulin levels measured at 60 minutes during OGTT; INS_120, plasma
insulin levels measured at 120 minutes during OGTT; LDL, low-density lipoprotein levels; miRNA, microRNA; OGTT, oral glucose tolerance
test: PBF, percentage of body fat; PLT, platelet blood count; RBC, red blood cell count; TG, triglyceride levels; WBC, white blood cell count

To our knowledge, these four serum miRNAs (hsa-miR-32-5p,
hsa-miR-382-5p, hsa-miR-1-3p, and hsa-miR-21-5p) have not been
studied as predictive biomarkers for T2D remission after surgery.
However, studies have reported associations between these
miRNAs with obesity and T2D. The miRNA hsa-miR-382-5p is in-
volved in cholesterol hemeostasis (23). Plasma and serum levels
of hsa-miR-21-5p are associated with T2D (24-26), as well as with
obesity (27,28). The miRNA hsa-miR-32-5p is also associated with
T2D (2%) and obesity (29,30). Qur pathway analysis identified 19
obesity- and T2D-related pathways regulated by these miRNAs,
including mechanistic target of rapamycin (serine/threonine ki-
nase) (mTOR), mitogen-activated protein kinase (MAPK), phos-
phatidylinositol 3-kinase-protein kinase b (PI3K-Akt), fatty acid
elongation, and degradation pathways. The miRNA hsa-miR-1-3p
has regulatory roles in cardiac muscle tissues and tumor suppres-
sors in various cancers (31). It is also dysregulated in pancreatic

cancer patients (32).

These miRNAs have been studied in bariatric surgery patients to
measure differential expression before and after surgery (16). An RYGB
study reported that plasma hsa-miR-32-5p and hsa-miR-21-5p were
significantly reduced 9 and 12 manths after surgery (33). However,
another RYGB study reported an increase of plasma hsa-miR-21-5p
12 months after surgery (28). The miRNAs hsa-miR-1-3p and hsa-miR-
382-5p were reported to be not significantly differentially expressed
after RYGB (33). It appears that predictive miRNAs do not need to be
differentially expressed after surgery. However, these studies were
primarily done in RYGB patients, and more studies with SG patients
are needed.

Our pilot study suggests that miRNAs could potentially predict
T2D remission after the intervention. Qur findings agree with a re-
cent study that identified predictive miRNAs for T2D remission after
diet intervention (34). The set of miRNAs are different from this study,
which might reflect the study population. Our study focused on pa-
tients with T2D and obesity, whereas the other study's patients had
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TABLE 5 Obesity- and insulin resistance-related pathways regulated by the four predictive miRNAs

No. KEGG pathway

1 Thyroid hermone signaling pathway

2 Lysine degradation

3 FoxO signaling pathway

4 Fatty acid elongation

5 Prolactin signaling pathway

6 Focal adhesion

7 Adherens junction

8 ECM-receptor interaction

9 Valing, leucine, and isoleucine hiosynthesis
10 Regulation of actin cytoskeleton

11 MAPK signaling pathway

12 P53 signaling pathway

13 mTOR signaling pathway

14 Protein processing in endoplasmic reticulum
15 Hippo signaling pathway

16 Fatty acid degradation

17 Endocytosis

18 PI3K-Akt signaling pathway

19 HIF-1 signaling pathway

No. of No. of
pvalue genes miRNAs
9.22E-05 33 3
2.04E-04 15 2
2.34E-04 41 3
0.0012 7 3
0.0014 21 3
0.0021 52 3
0.0024 20 2
0.0025 19 3
0.0036 2 2
0.0061 50 3
0.0102 54 3
0.0102 21 3
0.0133 18 3
0.0140 39 3
0.0157 32 3
0.0241 7 2
0.0263 41 3
0.0370 68 3
0.0478 26 3

Abbreviations: ECM, extracellular matrix; FoxO, forkhead box protein O; HIF-1, hypoxia-inducible factor 1; KEGG, Kyoto Encyclopedia of Genes and
Genomes; MAPK, mitogen-activated protein kinase; miRNA, microRNA; mTOR, mechanistic target of rapamycin (serine/threonine kinase); PI3K-Akt,

phosphatidylinositol 3-kinase-protein kinase b.

BMI around 30 as well as coronary heart disease. Nevertheless, our
study has limitations, including the small number of participants and
limited external validaticn. Owing te sample size limitations, we sim-
plified T2D and remission groups as dichatomous traits. Future studies
could also investigate T2D subtypes based on p-cell function and in-
sulin resistance measures (35) and include other diabetes-related vari-
ables such as C-peptide and T2D duration. Some of the patients were
unaware of their T2D status, so we could not obtain an accurate T2D
duration for these patients. Patients with differing risk profiles might
have different remission rates after surgery. Another limitation is that
we focused on SG without comparing other surgery types such as
RYGB. RYGB has better long-term T2D remission rates (4,11}, but only
8% of our BBSS patients underwent RYGB. Owing to study size lim-
itations, we could not adequately compare miRNA's predictive value
between these two surgery types. It would also be interesting to see
whether miRNAs can differentiate between the original ASMBS remis-
sion groups (“complete remission,” "partial remission,” “improvement,”
“unchanged,” and “recurrence”). Additionally, we considered only 179
miRNAs that were included in the quantitative PCR profiling platform
for serum samples. Using larger profiling platforms such as small RNA
sequencing might uncover more or better predictive miRNAs.

In conclusion, we identified four miRNAs (hsa-miR-32-5p, hsa-
miR-382-5p, hsa-miR-1-3p, and hsa-miR-21-5p) that might comple-
ment clinical models in predicting T2D remission after $G. Further

studies in much larger data are needed to confirm the utility of these

serum miRNAs as predictive biomarkers. The four serum miRNAs
could also be studied further to understand molecular subtypes of
T2D that separate remission and nonremission patients.O
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